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Abstract (Japanese) 

 

ATP感受性カリウムチャネルのサブユニットである Kir6.2は脳内に多く発現しているが、情動

やストレスとの関係性については不明な点が多い。 

本研究では、Kir6.2遺伝子欠損（Kir6.2-/-）マウスの情動調節について検討した。その結果、Kir6.2-/-

マウスで一般情動行動の低下と不安様行動が認められた。また、脳内モノアミン神経上に Kir6.2

が発現していた。さらに、雌性 Kir6.2-/-マウスで中脳におけるトリプトファン水酸化酵素タンパク

質の発現量が増加していた。 

次に、Kir6.2-/-マウスのストレス応答について検討した。その結果、急性拘束ストレス刺激負荷

により上昇した血中コルチコステロン濃度は、野生型より Kir6.2-/-マウスで高値を示した。また、

海馬のグルココルチコイド受容体陽性細胞上に Kir6.2が発現していた。 

以上の結果から、情動調節とストレス応答への Kir6.2の関与が示された。 

 

キーワード：ATP感受性カリウムチャネル、情動行動、モノアミン神経、ストレス、HPA系 
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 Abstract (English) 

Although Kir6.2, a pore-forming subunit of ATP-sensitive potassium (KATP) channels, is widely 

distributed in the brain, the mechanisms that underlie the impact of Kir6.2 on emotional behavior and 

stress responses are not yet fully understood. To clarify the involvement of Kir6.2 in emotional behavior, 

the behavioral characteristics of Kir6.2-knockout (Kir6.2-/-) mice were investigated. Kir6.2-/- mice showed 

impaired general behavior in a locomotor activity test and open field test. In addition, anxiety-like 

behavior was observed in the open field test, elevated plus-maze test and light-dark test. In particular, 

excessive anxiety-like behavior was observed in female Kir6.2-/- mice. Immunohistochemical studies 

showed that Kir6.2 was expressed on tryptophan hydroxylase (TPH) in dorsal raphe nuclei and tyrosine 

hydroxylase in the ventral tegmental area and locus coeruleus. Interestingly, TPH expression in the 

midbrain was significantly elevated in female Kir6.2-/- mice. These results suggest that Kir6.2 in 

monoamine neurons, especially serotonergic neurons, could be involved in emotional behavior. 

Furthermore, to clarify the involvement of Kir6.2 in stress responses, the changes in serum 

corticosterone levels induced by acute restraint stress in Kir6.2-/- mice were examined. In the non-stressed 

condition, basal corticosterone levels in Kir6.2-/- mice were higher than those in wild type (WT) mice. 

Kir6.2-/- mice also showed greater increases in serum corticosterone levels in response to exposure to acute 

restraint stress. These phenomena were more prominent in females than in males. Next, whether Kir6.2 is 

expressed on glucocorticoid receptor (GR)-positive cells in hippocampal CA1 and dentate gyrus (DG) was 

investigated. Immunohistochemical studies showed that Kir6.2 was expressed on GR-positive cells in 

hippocampal CA1 and DG. These results suggest that Kir6.2 in GR-positive cells could be involved in 

stress responses via the hypothalamus-pituitary-adrenal axis. 

 

Keywords: KATP channel, emotional behavior, monoamine, stress response, HPA axis 
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Involvement of KATP channels including Kir6.2 in regulation of emotional 
behaviors 
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Introduction 

 

ATP-sensitive potassium (KATP) channels are widely expressed in many tissues or organs, including 

the heart, pancreas, skeletal muscle, smooth muscle and brain, and regulate cell metabolism and 

membrane excitability1-6). They are composed of inwardly rectifying potassium channel subunits (Kir6.1 

and Kir6.2) and regulatory sulfonylurea receptor subunits (SUR1, SUR2A and SUR2B), and the 

combinations of these subunits differ in different tissues7). These inwardly rectifying K+ channels are 

activated by Mg2+-bound nucleotides and inhibited by intracellular ATP8,9). KATP channels play critical 

roles in glucose homeostasis through the release of insulin in pancreatic beta cells7). In the presence of 

high levels of glucose metabolism, and consequently increased relative levels of ATP, KATP channels 

close, causing the membrane potential of the cell to depolarize, activating voltage-gated calcium 

channels, and thus promoting the calcium-dependent release of insulin. In addition, they are important in 

the regulation of cardiac ischemia, adaptation to cardiac stress and skeletal muscle fatigue10-14). 

KATP channels in the brain play an important role in glucose homeostasis15,16), and novel functions of 

brain KATP channels continue to be identified: they help protect against neural apoptosis following a 

stroke17-19), and have recently been implicated in memory20), the suppression of generalized seizure 

during hypoxia21), and the regulation of male reproductive behavior22). Brain KATP channels consist of 

Kir6.1, Kir6.2, SUR1 and SUR2, and different combinations of these subunits in each region contribute 

to the diversity of KATP channels23-26). Kir6.2, one of the pore-forming subunits of KATP channels, is 

widely distributed throughout rat brain neurons and glial cells27,28). Especially, Kir6.2 is highly expressed 

in regions containing monoamine neurons such as the substantia nigra (SN), ventral tegmental area 

(VTA), striatum, locus coeruleus (LC), and dorsal raphe nucleus (DRN). Moreover, Kir6.2 is also 

observed in the synaptic neuropil in the hippocampus, amygdala, basal ganglia and cerebral cortex, 
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indicating that Kir6.2 is localized in dendrites and axons of monoamine neurons28). Therefore, it is 

inferred that Kir6.2 may be involved in monoamine neurotransmission. In fact, KATP channel-gated burst 

firing of dopamine (DA) neurons in the medial substantia nigra (m-SN) has been reported to be essential 

for novelty-dependent exploratory behavior in mice29). In addition, an in vivo microdialysis study 

showed that Kir6.2-containing KATP channels play regulatory roles in the increase in extracellular levels 

of DA by the perfusion of high levels of K+ in the striatum30). 

Brain monoamine compounds, such as DA, noradrenaline (NA) and serotonin (5-HT), play critical 

roles in emotional behaviors and stress responses31). It is likely that brain Kir6.2 affects emotional 

behaviors and plays a role in psychiatric disorders associated with monoamine neurotransmission. 

Interestingly, Kir6.2-knockout (Kir6.2-/-) mice exhibited the hypersensitive reaction to touch stimulation 

compared to wild type (WT) mice (data not shown). Thus, it seems that Kir6.2 deficient would affect 

emotional behavior. To clarify the involvement of Kir6.2 in emotional behavior, in the present study, the 

behavioral characteristics of Kir6.2-/- mice under non-stressed conditions were investigated. Furthermore, 

the distribution and localization of Kir6.2 in monoamine neurons of the mouse brain, and whether Kir6.2 

regulates the function of monoamine neurons were examined. 
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Materials and Methods 

 

The present studies were conducted in accordance with the Guide for the Care and Use of Laboratory 

Animals as adopted by the Committee on the Care and Use of Laboratory Animals of the International 

University of Health and Welfare. 

 

1． Animals 

In the present study, male and female Kir6.2-/- mice (from Drs. Miki and Seino) that were generated by 

targeted disruption of the KCNJ11 gene encoding the Kir6.2 subunit of KATP channels were used32). The 

Kir6.2 gene was cloned from a 129/Sv mouse genomic DNA library (Stratagene) by using its cDNA probe. 

A targeting vector was constructed by inserting the neomycin-resistance gene at a XhoI site in Kir6.2. The 

herpes simplex virus thymidine kinase gene was inserted downstream. The targeting vector was introduced 

into E14 embryonic stem (ES) cells by electroporation. Male and female C57BL/6J WT mice, the 

background strain of Kir6.2-/-, were purchased from Japan SLC, Inc. (Shizuoka, Japan) and used as a WT 

counterpart. Both C57BL/6J and Kir6.2-/- mice weighing 25-30 g were housed at a room temperature of 23 

± 1°C with a 12-h light-dark cycle (light on 7:00 a.m. to 7:00 p.m.). Food and water were available ad 

libitum. 

 

2． Experimental procedures 

2.1. Locomotor activity test 

To investigate the changes in circadian locomotor activity, 20- to 22-week-old mice were tested. Each 

mouse was placed in a cage, and circadian locomotor activity was measured by using a Supermex device 

(patent pending, Muromachi Kikai Co., Ltd., Tokyo, Japan). The total activity counts per hour were 
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automatically recorded for 72 h (starting at 19:00). The data were analyzed and stored in a personal 

computer using analytical software (Comp ACT HBS; Muromachi Kikai Co., Ltd., Tokyo, Japan). During 

this observation of circadian locomotor activity, a 12-h dark/light cycle was maintained (lights-off and -on 

at 19:00-7:00 and 7:00-19:00, respectively). Mice had free access to food and water for the duration of the 

experiment. 

 

2.2. Open field test 

To investigate changes in general emotional behavior, 15-week-old mice were tested using an apparatus 

based on an open field paradigm (model ST-1; Muromachi Kikai Co., Ltd., Tokyo, Japan). Each mouse 

was placed in the center of an open field and the behavior of the mouse in the open field was recorded for 

5 min. The apparatus was made of a gray wooden box (50 x 50 x 50 cm, 170 lux). An infrared beam sensor 

was installed on the wall to detect the numbers and duration of rearing behaviors. Other behavioral 

parameters, such as the locus and distance of movement (total locomotor activity (cm)) were recorded by 

an overhead color CCD camera. The mice were marked by putting green seals on the tops of their heads 

and the color CCD camera followed the center of gravity. Data from the CCD camera were collected 

through a custom-designed interface (CAT-10; Muromachi Kikai Co., Ltd., Tokyo, Japan) as a reflection 

signal. All of the data were analyzed and stored in a personal computer using analytical software (Comp 

ACT HBS; Muromachi Kikai Co., Ltd., Tokyo, Japan). The results were calculated in terms of thigmotaxis 

(amount of time in the outer versus inner zone (17 x 17 cm) of the test enclosure). Other parameters such 

as rearing behavior (count and duration) and distance moved were also scored. 
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2.3. Elevated plus-maze test 

To investigate changes in anxiety-like behavior, 14-week-old mice were tested using the elevated 

plus-maze paradigm (EPM-04M; Muromachi Kikai Co., Ltd., Tokyo, Japan). The apparatus was elevated 

40 cm from the ground and the maze consisted of two opposing open arms (30 x 6 x 0.3 cm) and two 

opposing enclosed arms (30 x 6 x 15 cm) that were connected by a central platform (6 x 6 cm, 40 lux), thus 

forming the shape of a plus sign. Each mouse was placed on a central platform, and the distance that the 

mouse moved in the maze was recorded for 5 min by an overhead color CCD camera that tracked the 

center of the mouse. Moreover, the time spent in and the number of entries into open or enclosed arms 

were also recorded. Data from the CCD camera were collected through a custom-designed interface 

(CAT-10; Muromachi Kikai Co., Ltd., Tokyo, Japan) as a reflection signal. All of the data were analyzed 

and stored in a personal computer using analytical software (Comp ACT HBS; Muromachi Kikai Co., Ltd., 

Tokyo, Japan). The results were calculated as mean ratios of the time spent in the open arms to the total 

time spent in both the open and enclosed arms. Entries into the open arms (%), total number of entries and 

distance moved (cm) were also scored. 

 

2.4. Light-dark test 

To investigate the changes in anxiety-like behavior, 9-week-old mice were tested using the light-dark 

paradigm (LD1040; O’Hara Co., Ltd., Tokyo, Japan). The apparatus consisted of a light compartment (20 

x 20 x 25 cm) and a dark compartment (20 x 20 x 25 cm). The two compartments were separated by a 

partition with a door, and the mouse was able to move between the two compartments. At the beginning of 

the observation session, the mouse was placed in the dark compartment and the distance that the mouse 

moved in the light and dark compartments was recorded for 10 min by an overhead CCD camera. 

Moreover, the time spent in each compartment, the latency to enter the light compartment and the number 
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of transitions between compartments were also recorded. All of the data were analyzed and stored in a 

personal computer using analytical software (ImageJ LD4; National Institutes of Health, MD, USA).  

 

2.5. Rota-rod test 

To investigate changes in motor coordination, 18-week-old mice were tested using the rota-rod test 

(MK-660B; Muromachi Kikai Co., Ltd., Tokyo, Japan). The apparatus consisted of a base platform and a 

rotating rod with a diameter of 3 cm and a non-slippery surface. A 30 cm-long rod was placed at a height 

of 15 cm from the base. The rod was divided into 5 equal sections by 6 disks. Thus, several mice were 

tested on the apparatus simultaneously. Each mouse was placed on the rod for 1 min and the rod was then 

rotated, which required the mouse to move forward. The speed of rotation was 10 rpm on days 1 and 2, 

and 20 rpm on days 3 and 4. Each mouse was tested on the rotating rod for a total of 5 min. If a mouse fell 

from the rod, it was immediately replaced. The test was performed twice a day, and at each session, the 

time until the first fall and the number of falls during the 5-min test were measured as indicators of motor 

impairment. 

 

3． Immunohistochemistry 

In the immunohistochemical analysis, mice were deeply anesthetized with sodium pentobarbital (70 

mg/kg, i.p.) and perfusion-fixed with 4% paraformaldehyde (Wako Pure Chemical Industries Ltd., Osaka, 

Japan). The brains were quickly removed after perfusion, and post-fixed in 4% paraformaldehyde for 24 h 

at 4°C. Brain coronal sections (80 μm thick) were prepared on a Microslicer (DTK-1000; Ted Pella, Inc., 

CA, USA). The brain sections were incubated with 10% normal horse serum (NHS) in 0.01 M PBS for 1 h 

on ice to block nonspecific antibody binding. The primary antibody was diluted in 0.01 M PBS containing 

10% NHS [1:100 Kir6.2 goat polyclonal antibody (Santa Cruz Biotechnology, Co., Ltd., CA, USA)] and 
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incubated for 2 days at 4°C. The samples were then rinsed with 0.01 M PBS and incubated with the 

appropriate secondary antibody conjugated with Alexa Fluor 488 (1:1,000) for 24 h at 4°C. The brain 

sections were rinsed with 0.01 M PBS, and then incubated with 10% NHS in 0.01 M PBS for 1 h on ice. 

The primary antibody was diluted in 0.01 M PBS containing 10% NHS [1:600 tryptophan hydroxylase 

(TPH) mouse monoclonal antibody (Sigma Chemical, Co., St. Louis, MO, USA) and 1:500 tyrosine 

hydroxylase (TH) mouse monoclonal antibody (Merck Millipore, Ltd., Darmstadt, Germany)] and 

incubated for 2 days at 4°C. The samples were then rinsed with 0.01 M PBS and incubated with the 

appropriate secondary antibody conjugated with Alexa Fluor 546 (1:1,000) for 24 h at 4°C. The brain 

sections were rinsed with 0.01 M PBS, and then mounted on glass slides with PermaFluor Aqueous 

mounting medium (Thermo Fisher Scientific, Inc., MA, USA). Fluorescence immunolabeling was detected 

using a confocal laser-scanning microscope (FV1000; Olympus Optical, Tokyo, Japan). 

 

4． Western blotting 

The midbrain, containing raphe, was quickly removed and homogenized in 6 volumes of ice-cold 

buffer. The midbrain was removed within 10 min after decapitation and stored at -70°C for future analysis. 

The midbrain was homogenized in 6 volumes of ice-cold buffer containing 20 mM Tris-HCl (pH7.4; 

Wako Pure Chemical Industries Ltd., Osaka, Japan), 2 mM ethylenediaminetetraacetic acid (EDTA; Wako 

Pure Chemical Industries Ltd., Osaka, Japan), 10 mM ethylene glycol-bis 

(2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA; Wako Pure Chemical Industries Ltd., Osaka, 

Japan), 250 mM sucrose (Wako Pure Chemical Industries Ltd., Osaka, Japan), 1% Triton 

(Calbiochem-Novabiochem, La Jolla, CA, USA) and a protease inhibitor cocktail (Complete®; Roche 

Molecular Biochemicals, Mannheim, Germany), using an ultrasound homogenizer (UR-20P, TOMY 

SEIKO Co. Ltd., Tokyo, Japan). The homogenates were homogenized again immediately after being 



11 
 

centrifuged at 10,000 x g for 1 min at 4°C. The homogenates were centrifuged at 1,000 x g for 1 min at 

4°C, and the supernatants were collected and stored as test samples at -70°C for future analysis. 

An aliquot of test sample was diluted with an equal volume of electrophoresis sample buffer (Bio-Rad 

Laboratories, Co., Ltd., CA, USA). Proteins (10 µg/lane) were separated by size on 4-20% 

SDS-polyacrylamide gradient gel and transferred to a polyvinylidene difluoride (PVDF) membrane 

(Bio-Rad Laboratories, Co., Ltd., CA, USA) in 5% methanol (Wako Pure Chemical Industries Ltd., Osaka, 

Japan) added Tris-glycine buffer (Bio-Rad Laboratories, Co., Ltd., CA, USA) using a semi-dry 

electrophoretic transfer cell (Bio-Rad Laboratories, Co., Ltd., CA, USA). In addition, molecular markers 

(Precision plus protein dual color standards; Bio-Rad Laboratories, Co., Ltd., CA, USA) were loaded in 

lanes adjacent to the sample lanes before the commencement of a run. For the immunoblot detection of 

TPH and TH, membranes were blocked in 0.05% Tween 20-Tris-Buffered Saline (TTBS) containing 3% 

bovine serum albumin (BSA; Sigma-Aldrich, Co., Ltd., MO, USA) for 1 h at room temperature with 

agitation. The membrane was incubated with primary antibody diluted in Solution 1 (TOYOBO, Co., Ltd., 

Osaka, Japan) [1:1,000 TPH (Sigma Chemical, Co., St. Louis, MO, USA), and 1:1,000 TH (Merck 

Millipore, Ltd., Darmstadt, Germany)] overnight at 4°C. The membranes were washed in TTBS and then 

incubated for 1 h at room temperature with horseradish peroxidase-conjugated goat anti mouse IgG 

(Jackson Immunoresearch Laboratories, Co., Ltd., PA, USA), which was diluted 1:2,000 or 1:10,000 in 

Solution 2 (TOYOBO, Co., Ltd., Osaka, Japan). After this incubation, the membranes were washed in 

TTBS. The antigen-antibody-peroxidase complex was then finally detected by enhanced 

chemiluminescence (Santa Cruz Biotechnology, Co., Ltd., CA, USA), and scanned, optimized and 

analyzed by Chemi Doc XRS (Bio-Rad Laboratories, Co., Ltd., CA, USA).  
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5． Statistical analysis 

The data are presented as the mean with S.E.M. The statistical analyses were performed using two-way 

repeated measure ANOVA or Student’s t-test. 
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Results 

 

1． Locomotor activity test 

Spontaneous locomotor activity of Kir6.2-/- mice as detected by the locomotor activity test is shown in 

Fig. 1-1. Spontaneous locomotor activity during the dark period was significantly decreased in both sexes. 

Such decreases were particularly apparent in female Kir6.2-/- mice. (Fig. 1-1A; F(1,852)=0.168, p=0.6895 vs. 

male WT mice, Fig. 1-1B; F(1,994)=4.472, p=0.0529 vs. female WT mice) 

 

2． Open field test 

General behaviors of Kir6.2-/- mice as detected by the open field test are shown in Fig. 1-2. Male 

Kir6.2-/- mice showed significant decreases in both the percentage of time spent in the central area (Fig. 

1-2A; p<0.05) and the distance moved (Fig. 1-2B; p<0.05) compared with male WT mice. Female Kir6.2-/- 

mice showed significant decreases in rearing counts (Fig. 1-2G; p<0.01) and rearing duration (Fig. 1-2H; 

p<0.01) compared with female WT mice. 

 

3． Elevated plus-maze test 

Anxiety-like behaviors of Kir6.2-/- mice as detected by the elevated plus-maze test are shown in Fig. 

1-3. The percentage of time spent in open arms was significantly decreased in Kir6.2-/- mice of both sexes 

(Fig. 1-3B and F; p<0.01). Moreover, female Kir6.2-/- mice showed significant decreases in distance 

moved (Fig. 1-3E; p<0.05) and the total number of entries (Fig. 1-3H; p<0.05) compared with female WT 

mice. Male Kir6.2-/- mice tended to show a decrease in distance moved (Fig. 1-3A; p=0.0571). 
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4． Light-dark test 

Anxiety-like behaviors of Kir6.2-/- mice as detected by the light-dark test are shown in Fig. 1-4. 

Significant decreases in both the distance moved in the light compartment (Fig. 1-4B and H; p<0.01) and 

the number of transitions (Fig. 1-4F and L; p<0.01 or 0.001) and significant increases in the latency to enter 

the light compartment (Fig. 1-4E and K; p<0.05) were observed in Kir6.2-/- mice of both sexes. Moreover, a 

significant increase in the time spent in the dark compartment (Fig. 1-4I; p<0.05) and a decrease in the time 

spent in the light compartment (Fig. 1-4J; p<0.05) were observed in female Kir6.2-/- mice. 

 

5． Rota-rod test 

Motor coordination of Kir6.2-/- mice as detected by the rota-rod test is shown in Fig. 1-5. In male 

Kir6.2-/- mice, an apparent reduction in the latency to fall (Fig. 1-5A; F(1,77)=3.893, p=0.0741 vs. male WT 

mice) and a tendency for an increase in the number of falls (Fig. 1-5B; F(1,77)=2.839, p=0.1201 vs. male 

WT mice) from the rotating rod were observed on day 3. In female Kir6.2-/- mice, a significant reduction in 

the latency to fall (Fig. 1-5C; F(1,91)=10.536, p=0.0064 vs. female WT mice) and a significant increase in 

the number of falls (Fig. 1-5D; F(1,91)=5.792, p=0.0317 vs. female WT mice) from the rotating rod were 

observed on day 3. 

 

6． Immunohistochemistry 

The distribution and localization of Kir6.2 in monoamine neurons of mouse brain are shown in Fig. 1-6. 

Kir6.2 was expressed in TPH-positive cells in the DRN of male WT mice (Fig. 1-6A, B and C-i, ii). Kir6.2 

was also expressed in TH-positive cells in the VTA (Fig. 1-6D, E and F-i, ii) and the LC (Fig. 1-6G, H and 

I-i, ii) of male WT mice. 
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7． Western blotting 

The changes in the protein levels of TPH and TH in the Kir6.2-/- mouse midbrain are shown in Fig. 1-7. 

Western blotting showed that whole-cell protein levels of TPH in the midbrain were significantly increased 

in female Kir6.2-/- mice (Fig. 1-7F; p<0.05). 
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Fig. 1-1. Spontaneous locomotor activity in Kir6.2-/- mice as detected by the locomotor activity test. 
Each mouse was placed independently in a cage with the same shape as its home cage, and its locomotor 
activity was recorded for 72 h. (A) Analysis of male mice. (B) Analysis of female mice. Each point 
represents the mean with SEM of 7-8 mice. Open and closed circles represent wild type and Kir6.2-/- 

mice, respectively. *p<0.05, **p<0.01, ***p<0.001 vs. wild type mice. WT: wild type mice, KO: 
Kir6.2-/- mice. 
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Fig. 1-2. General behaviors of Kir6.2-/- mice as detected by the open field test. Each mouse was 
placed in the center of an open field and the behavior of the mouse in the open field was recorded for 5 
min. (A-D) Analysis of male mice. (E-H) Analysis of female mice. The percentage of time spent in the 
central area (A, E), the distance moved (B, F), the rearing counts (C, G) and the rearing duration (D, H) 
were scored. Each column represents the mean with SEM of 7-8 mice. *p<0.05, **p<0.01 vs. wild type 
mice. WT: wild type mice, KO: Kir6.2-/- mice. 
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Fig. 1-3. Anxiety-like behaviors of Kir6.2-/- mice as detected by the elevated plus-maze test. Each 
mouse was placed on a central platform, and the distance that the mouse moved in the maze was 
recorded for 5 min. (A-D) Analysis of male mice. (E-H) Analysis of female mice. The distance moved 
(A, E), the percentage of time spent in open arms (B, F), the percentage of entries into open arms (C, G) 
and the total number of entries into both open and enclosed arms (D, H) were scored. Each column 
represents the mean with SEM of 6-8 mice. *p<0.05, **p<0.01 vs. wild type mice. WT: wild type mice, 
KO: Kir6.2-/- mice. 
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Fig. 1-4. Anxiety-like behaviors of Kir6.2-/- mice as detected by the light-dark test. Each mouse was 
placed in the dark compartment, and the distance that the mouse moved in the box for 10 min was 
recorded. (A-F) Analysis of male mice. (G-L) Analysis of female mice. The distances moved in the dark 
compartment (A, G) and the light compartment (B, H), the times spent in the dark (C, I) and light 
compartments (D, J), the latency to enter the light compartment (E, K) and the number of transitions 
between compartments (F, L) were scored. Each column represents the mean with SEM of 7-8 mice. 
*p<0.05, **p<0.01, ***p<0.001 vs wild type mice. WT: wild type mice, KO: Kir6.2-/- mice.  
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Fig. 1-5. Motor coordination of Kir6.2-/- mice as detected by the rota-rod test. Each mouse was 
placed on the rod for 1 min and the rod was then rotated, which required the mouse to move forward. 
The speed of rotation was 10 rpm on days 1 and 2, and 20 rpm on days 3 and 4. Each mouse was tested 
on the rotating rod for a total of 5 min. If a mouse fell from the rod, it was immediately replaced. Twice 
a day, the time until the first fall and the number of falls during the 5 min test period were measured as 
indicators of motor impairment. (A, B) Analysis of male mice. (C, D) Analysis of female mice. The 
latency to the first fall (A, C) and the number of falls (B, D) from a rotating rod were scored. Each point 
represents the mean with SEM of 6-8 mice. Open and closed circles represent wild type and Kir6.2-/- 

mice, respectively. *p<0.05 , **p<0.01 vs wild type mice. WT: wild type mice, KO: Kir6.2-/- mice. 
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Fig. 1-6. Distribution and localization of Kir6.2 in the midbrain of wild type mouse. Left: Kir6.2 
labeled in green (A) and tryptophan hydroxylase (TPH) labeled in red (B) were expressed in the dorsal 
raphe nuclei (DRN) of male wild type mice (C-i, ii). Middle: Kir6.2 labeled in green (D) and tyrosine 
hydroxylase (TH) labeled in red (E) were expressed in the ventral tegmental area (VTA) of male wild 
type mice (F-i, ii). Right: Kir6.2 labeled in green (G) and tyrosine hydroxylase (TH) labeled in red (H) 
were expressed in the locus coeruleus (LC) of male wild type mice (I-i, ii). Scale bar = 100 μm. 
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Fig. 1-7. Changes in the protein levels of tryptophan hydroxylase (TPH) and tyrosine hydroxylase 
(TH) in the midbrain of Kir6.2-/- mice. (A-D) Analysis of male mice. (E-H) Analysis of female mice. 
(A, C, E, G) Representative Western blotting of TPH (A, E) and TH (C, G) in the midbrain of wild type 
and Kir6.2-/- mice. (B, D, F, H) Quantitative analysis of immunoreactivities for TPH (B, F) and TH (D, 
H). Each column represents the mean with SEM of 3-4 mice. *p<0.05 vs wild type mice. WT: wild type 
mice, KO: Kir6.2-/- mice. 
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Discussion 

 

Brain monoamine neurons play a critical role in several emotional behaviors, and Kir6.2 is highly 

expressed in brain regions containing monoamine neurons28). It is therefore possible that brain Kir6.2 

affects emotional behaviors associated with monoamine neurotransmission. In the present study, the 

involvement of Kir6.2, pore-forming subunits of KATP channels, in emotional behaviors under non-stressed 

conditions were investigated. 

In the spontaneous locomotor activity test, both male and female Kir6.2-/- mice exhibited 

hypolocomotion during the dark period. In the open field test, male Kir6.2-/- mice showed a significant 

decrease in the time spent in the central area. A decrease in the distance moved was also observed. 

Moreover, female Kir6.2-/- mice showed significant decreases in both rearing counts and rearing duration. 

These results indicate that Kir6.2 could be involved in general emotional behaviors. These findings 

strongly agree with a previous report that Kir6.2-/- mice differ from WT mice with respect to their behavior 

in novel situations33). Furthermore, mice carrying the human Kir6.2 mutation V59M, valine-to-methionine 

at position 59, which results in an increased expression of Kir6.2 in the brain, are more active and show an 

increase in exploratory behavior34,35). Taken together, these results suggest that Kir6.2 influences the 

regulation of general emotional behaviors under non-stressed conditions. 

To clarify the effect of Kir6.2 mutation on anxiety-like behavior, the behavior of Kir6.2-/- mice was 

checked in the elevated plus-maze test and the light-dark test. In the elevated plus-maze test, both male and 

female Kir6.2-/- mice showed a significant decrease the percentage of time spent in open arms. In the 

light-dark test, both male and female Kir6.2-/- mice showed a significant decrease in the distance moved in 

the light compartment and an increase in the latency to enter the light compartment. Moreover, female 

Kir6.2-/- mice showed a significant increase in the time spent in the dark compartment. These results 
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strongly agree with previous reports that Kir6.2-/- mice exhibit increased anxiety-like behavior and 

Kir6.2-increased mice (Kir6.2-V59M) showed reduced anxiety-like behavior in the elevated plus-maze, the 

successive alleys test, and the light-dark test33,35). In addition, the novel finding of the present study is that 

excessive anxiety-like behavior was observed in female Kir6.2-/- mice. Namely, increase in time spent in 

dark compartment in the light-dark test, a indicator of anxiety, was more pronounced in female than male 

Kir6.2-/- mice. Although the reason for this result is not clear, it may be due to a gender difference in 

monoamine neurons. 

Kir6.2 is also expressed in basal ganglia and the cerebellum, which controls motor coordination23,28). 

Therefore, it is possible that both the decrease in general emotional behaviors and the increase in 

anxiety-like behaviors observed in Kir6.2-/- mice were caused by the impairment of motor coordination. To 

investigate possible motor impairment under a Kir6.2 deficiency, Kir6.2-/- mice were tested using the 

rota-rod test. At a rod-rotating speed of 10 rpm, a Kir6.2 deficiency did not significantly affect either the 

latency to fall or the number of falls from the rotating rod in male. In contrast, under these conditions, 

significant shortening of the latency to fall was observed in female Kir6.2-/- mice. At a rod-rotating speed of 

20 rpm, Kir6.2-/- mice showed both a decrease in the latency to fall and an increase in the number of falls 

from the rotating rod over 5 min, and these impairments were more prominent in females. These results 

indicate that although Kir6.2-/- mice may be impaired with regard to advanced motor coordination, they are 

capable of simple exercise. In addition, Kir6.2-/- mice showed the hypersensitive reaction to touch 

stimulation and the movements of Kir6.2-/- mice were very quick compared with WT mice (data not shown). 

Moreover, in forced swim test, Kir6.2 deficient failed to change in the immobility time in both sexes (data 

not shown). These results would be the evidence that Kir6.2 deficient failed to induce sever impairment of 

motor coordination and affect on general malaise. However, it was a fact that partial movement 
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disorder-like behavior was observed in Kir6.2-/- mice. Therefore, the phenotype of emotional behavior 

obtained in the present study needs to consider a possible impairment of mild motor coordination. 

In the next set of experiments, the expression pattern of Kir6.2 in 5-HT, DA or NA neurons was focused. 

The immunohistochemical analysis showed that Kir6.2 was expressed in TPH-positive cells in the DRN, 

and in TH-positive cells in the VTA and LC of WT mice. Therefore, Kir6.2 might regulate monoamine 

neurons in the brain. KATP channel-gated burst firing in DA neurons of the m-SN is essential for 

novelty-dependent exploratory behaviors in mice29). In addition, an in vivo microdialysis study showed that 

Kir6.2-containing KATP channels regulate the increase in extracellular levels of DA with the perfusion of 

high levels of K+ in the striatum30). Although these reports indicate that Kir6.2 plays a functional role in 

monoamine neurons in the brain, they focused on DA neurons in the SN. The novel finding in the present 

study is that Kir6.2 may play a functional role in DA neurons in the VTA as well as other monoamine 

neurons. Further studies are needed to determine whether Kir6.2 in monoamine neurons regulates the 

release of 5-HT, DA and NA, and influences the behavioral changes in Kir6.2-/- mice. 

Another question to consider is whether a deficiency of Kir6.2 affects the expression of functional 

enzymes in brain monoamine neurons. The expression of TPH and TH in the midbrain of WT mice was 

checked. Western blotting analysis suggested that protein levels of TPH, the rate-limiting enzyme in 5-HT 

synthesis, in whole-cell lysate obtained from the midbrain were significantly increased in female, but not 

male, Kir6.2-/- mice. On the other hand, there were no differences in the expression of TH in either male or 

female Kir6.2-/- mice. These results indicate that the synthesis of 5-HT may be increased in female Kir6.2-/- 

mice. It has been reported that 5-HT2A and 5-HT2C receptors modulate anxiety-like behaviors36-39). One 

explanation for why excessive anxiety-like behavior was observed in Kir6.2-/- mice may be that 5-HT 

synthesis was increased and 5-HT2A and 5-HT2C receptors were stimulated. On the other hand, previous 

studies in stress-adaptive and -maladaptive animals have provided evidence that an increase in brain 5-HT 
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signaling may be a key factor in the adaptation to stress40-43). In addition, stimulation of 5-HT1A receptor 

produced emotional resistance to stress stimuli in mice44-46). TPH expression was also increased and 

decreased in the midbrain in stress-adaptive and -maladaptive mice, respectively47). These reports indicate 

that the constitutive activation of brain 5-HT neurons could be necessary for the development of stress 

adaptation. Thus, another possibility is that an increase in TPH in the midbrain of female Kir6.2-/- mice 

might be compensatory mechanisms to excessive anxiety. 

At least in my understanding, there is no report on the gender differences on the role of Kir6.2 in 

emotional regulation. To clarify this point, the present study has carried out the two sets of simple 

experiments. First, the possibility that there are gender differences on the expression of Kir6.2 was 

considered. Although the expression of Kir6.2 protein in the midbrain and hippocampus of WT mice has 

been checked, there were no changes in protein levels among sexes in these brain regions (data not shown). 

Furthermore, to clarify the involvement of Kir6.2 in stress responses, the changes in serum corticosterone 

levels induced by acute restraint stress in Kir6.2-/- mice were investigated. Surprisingly, gender differences 

of stress response were observed in Kir6.2-/- mice. Detail of them was described in chapter 2. 

KATP channels play a critical role in glucose metabolism through the release of insulin. Another concern 

in the present study is the possibility that a deficiency of Kir6.2 induced abnormal glucose metabolism, and 

hyperglycemia caused emotional abnormality. This possibility may be excluded by unpublished 

observation that Kir6.2-/- mice developed diabetes when fed a high-fat diet, but showed a well-controlled 

blood glucose level under normal feeding. 

In summary, the present study demonstrated that KATP channels including Kir6.2 regulate emotional 

behaviors such as anxiety-like behavior. A possible mechanism for such regulation may involve the 

influence of Kir6.2 on monoamine neurons in the brain. In particular, the observation of excessive 

anxiety-like behavior in female Kir6.2-/- mice might be due to the activation of brain 5-HT neurons. 
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Although there are still many questions regarding the mechanisms of the relationship between Kir6.2 and 

emotional regulation, the present study provides important evidence suggesting that KATP channels may be 

a novel target for the treatment of psychiatric disorders. 
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Chapter 2 

 
Involvement of KATP channels including Kir6.2 in stress responses 
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Introduction 

 

As mentioned in a previous chapter, KATP channels including Kir6.2 can regulate emotional behaviors. 

A possible mechanism for such regulation may involve the influence of Kir6.2 on monoamine neurons in 

the brain. Moreover, Kir6.2 is also highly expressed in brain regions such as the hippocampus, 

hypothalamus and pituitary, which play important roles in stress responses28,48). The 

hypothalamic-pituitary-adrenal (HPA) axis is a complex set of direct influences and feedback interactions 

among three endocrine glands (the hypothalamus, the pituitary gland, and the adrenal glands), which is 

activated by exposure to stress49). The paraventricular nucleus (PVN) of the hypothalamus contains 

neuroendocrine neurons that synthesize and secrete corticotrophin-releasing hormone (CRH) and arginine 

vasopressin (AVP). These hormones sequentially lead to secretion of the adrenocorticotropic hormone 

(ACTH) from the anterior lobe of the pituitary. ACTH releases glucocorticoids (cortisol in humans and 

corticosterone in mice and rats) from the adrenal cortex into plasma. Regulatory control over the HPA axis 

is mediated via negative feedback by the glucocorticoid receptor (GR) in the hippocampus, hypothalamus 

and pituitary50). Kir6.2 is expressed on corticotrophs (ACTH cells) in the anterior lobe of the pituitary 

gland in rats48), and plays possible roles in the control of ACTH secretion. Moreover, iptakalim, a KATP 

channel opener, inhibits the increase in serum corticosterone induced by chronic mild stress51). Therefore, 

brain Kir6.2 could affect stress responses and play a role in psychiatric disorders associated with the HPA 

axis. To clarify the involvement of Kir6.2 in stress responses, in the present study, the serum 

concentrations of corticosterone in Kir6.2-/- mice under stressed conditions were investigated. Furthermore, 

the distribution and localization of Kir6.2 in the hippocampus were examined. 
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Materials and Methods 

 

The present studies were conducted in accordance with the Guide for the Care and Use of Laboratory 

Animals as adopted by the Committee on the Care and Use of Laboratory Animals of the International 

University of Health and Welfare. 

 

1． Animals 

In the present study, male and female Kir6.2-/- mice (from Drs. Miki and Seino) that were generated by 

targeted disruption of the KCNJ11 gene encoding the Kir6.2 subunit of KATP channels were used32). The 

Kir6.2 gene was cloned from a 129/Sv mouse genomic DNA library (Stratagene) by using its cDNA probe. 

A targeting vector was constructed by inserting the neomycin-resistance gene at a XhoI site in Kir6.2. The 

herpes simplex virus thymidine kinase gene was inserted downstream. The targeting vector was introduced 

into E14 embryonic stem (ES) cells by electroporation. Male and female C57BL/6J WT mice, the 

background strain of Kir6.2-/-, were purchased from Japan SLC, Inc. (Shizuoka, Japan) and used as a WT 

counterpart. Both C57BL/6J and Kir6.2-/- mice weighing 25–30 g were housed at a room temperature of 23 

± 1°C with a 12-h light-dark cycle (light on 7:00 a.m. to 7:00 p.m.). Food and water were available ad 

libitum. 

 

2． Measurement of serum corticosterone concentrations 

Seven- to nine-week-old mice were exposed to single restraint stress for 60 min by insertion into a 

syringe (50 mL). Just after this exposure to restraint stress, mice were sacrificed by decapitation and their 

blood was collected from 14:00 to 18:00. Blood samples were centrifuged at 2,380 x g for 15 min, and 

serum was stored at -20oC for future analysis. The corticosterone concentrations were determined by 
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competitive enzyme immunoassay (AssayPro, St. Charles, MO, USA) according to the manufacturer’s 

instructions. 

 

3． Immunohistochemistry 

In the immunohistochemical analysis, mice were deeply anesthetized with sodium pentobarbital (70 

mg/kg, i.p.) and perfusion-fixed with 4% paraformaldehyde (Wako Pure Chemical Industries Ltd., Osaka, 

Japan). The brains were quickly removed after perfusion, and post-fixed in 4% paraformaldehyde for 24 h 

at 4°C. Brain coronal sections (80 μm thick) were prepared on a Microslicer (DTK-1000; Ted Pella, Inc., 

CA, USA). The brain sections were incubated with 10% normal horse serum (NHS) in 0.01 M PBS for 1 h 

on ice to block nonspecific antibody binding. The primary antibody was diluted in 0.01 M PBS containing 

10% NHS [1:100 Kir6.2 goat polyclonal antibody (Santa Cruz Biotechnology, Co., Ltd., CA, USA)] and 

incubated for 2 days at 4°C. The samples were then rinsed with 0.01 M PBS and incubated with the 

appropriate secondary antibody conjugated with Alexa Fluor 488 (1:1,000) for 24 h at 4°C. The brain 

sections were rinsed with 0.01 M PBS, and then incubated with 10% NHS in 0.01 M PBS for 1 h on ice. 

The primary antibody was diluted in 0.01 M PBS containing 10% NHS [1:100 glucocorticoid receptor 

(GR) rabbit polyclonal antibody (Santa Cruz Biotechnology, Co., Ltd., CA, USA)] and incubated for 2 

days at 4°C. The samples were then rinsed with 0.01 M PBS and incubated with the appropriate secondary 

antibody conjugated with Alexa Fluor 546 (1:1,000) for 24 h at 4°C. The brain sections were rinsed with 

0.01 M PBS, and then mounted on glass slides with PermaFluor Aqueous mounting medium (Thermo 

Fisher Scientific, Inc., MA, USA). Fluorescence immunolabeling was detected using a confocal 

laser-scanning microscope (FV1000; Olympus Optical, Tokyo, Japan). 
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4． Statistical analysis 

The data are presented as the mean with S.E.M. The statistical analyses were performed using one-way 

ANOVA with the Bonferroni/Dunnett multiple comparison test. 
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Results 

 

1． Serum corticosterone concentrations 

The effects of exposure to acute restraint stress on serum corticosterone concentrations in mice are 

shown in Fig. 2-1. In the non-stressed condition, the deficiency of Kir6.2 tended to increase corticosterone 

concentrations in males and significantly increased these concentrations in females (Fig. 2-1B; p<0.01 vs. 

wild type non-stressed mice). Exposure to acute restraint stress for 60 min significantly increased 

corticosterone concentrations in WT mice and Kir6.2-/- mice of both sexes (Fig. 2-1A, B; p<0.05 or 0.01 vs. 

wild type non-stressed mice, p<0.05 or 0.001 vs. Kir6.2-/- non-stressed mice). In the stressed condition, 

corticosterone concentrations in Kir6.2-/- mice of both sexes were higher than those in WT mice (Fig. 2-1A, 

B; p<0.05 or 0.001 vs. wild type stressed mice). 

 

2． Immunohistochemistry 

The distribution and localization of Kir6.2 in the mouse hippocampus are shown in Fig. 2-2. Kir6.2 was 

expressed in GR-positive cells in CA1 (Fig. 2-2A-F) and dentate gyrus (DG) (Fig. 2-2G-L) of female WT 

mice. 
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Fig. 2-1. Influences of acute restraint stress on serum corticosterone concentration. (A) Analysis of 
male mice. (B) Analysis of female mice. Each column represents the mean with SEM of 4-7 mice. 
*p<0.05, **p<0.01, ***p<0.001 vs. wild type non-stressed mice. #p<0.05, ###p<0.001 vs. wild type 
stressed mice. $p<0.05, $$$p<0.001 vs. Kir6.2-/- non-stressed mice. WT-NS: wild type non-stressed mice, 
WT-S: wild type stressed mice, KO-NS: Kir6.2-/- non-stressed mice, KO-S: Kir6.2-/- stressed mice. 
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Fig. 2-2. Distribution and localization of Kir6.2 in the hippocampus of mice. Kir6.2 labeled in green 
(A, D, G, J) and GR labeled in red (B, E, H, K) were expressed in CA1 (C, F) and DG (I, L) of  the 
hippocampus in female wild type mice. (A, B, C, G, H, I) Scale bar = 200 μm. (D, E, F, J, K, L) Scale 
bar = 50 μm. 
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Discussion 

 

The HPA axis plays a critical role in several stress responses49,50). Kir6.2 is widely distributed 

throughout rat brain neurons and glial cells27,28). Kir6.2 is highly expressed in brain regions that control the 

HPA axis and corticosterone secretion28,48). Because brain Kir6.2 is likely to affect stress responses 

associated with the HPA axis, the present study investigated the involvement of Kir6.2 in stress responses. 

Glucocorticoid hormones are the final step in the activation of the HPA axis and are known to function 

in the biological response to stress49,52). In addition, acute restraint stress increases the plasma 

corticosterone concentration in rodent53). To clarify the stress response in Kir6.2-/- mice, this study 

examined the change in the corticosterone concentration induced by exposure to acute restraint stress. In 

the non-stressed condition, basal corticosterone concentrations tended to be increased in male Kir6.2-/- mice 

and were significantly increased in female Kir6.2-/- mice compared to those in WT mice. Furthermore, 

exposure to acute restraint stress induced significant increases in corticosterone concentrations in Kir6.2-/- 

mice of both sexes compared to those in Kir6.2-/- non-stressed mice. Interestingly, these corticosterone 

concentrations were significantly higher than those in stressed WT mice in both sexes. These results 

suggest that Kir6.2 could be involved in the regulation of serum corticosterone levels. Kir6.2 is expressed 

on cells containing ACTH in the anterior lobe of the pituitary gland in rats48). On the other hand, Kir6.2 

was not expressed on cells containing prolactin, follicular stimulating hormone, or growth hormone48). 

These findings suggest that Kir6.2 may play important roles in ACTH cells in the pituitary gland. Moreover, 

acute restraint stress elevated levels of ACTH and corticosterone, and activated cAMP-PKA-CREB 

signaling pathway which is involved in CRH gene expression in the PVN. These changes were normalized 

by iptakalim, a KATP channel opener54). In addition, the expression of Kir6.2 mRNA and protein has been 
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demonstrated in an adrenal chromaffin cell line (MAH cells)55). These reports suggest that Kir6.2 may 

regulate the secretion of corticosterones. 

Another finding of the present study is the gender difference in serum corticosterone concentrations in 

Kir6.2-/- mice. Basal corticosterone concentrations in the non-stressed condition tended to be increased in 

male Kir6.2-/- mice and were significantly increased in female Kir6.2-/- mice compared to those in WT mice. 

In addition, although there was no difference in the percentage corticosterone increase under exposure to 

acute restraint stress, the concentrations were higher in female Kir6.2-/- mice. Therefore, it is considered 

that the change in the stress response due to Kir6.2 deficiency is more prominent in females. Since 

activation of the HPA axis is influenced by other endocrine systems such as sex hormones, the higher 

corticosterone levels in females has been thought to reflect activation of the HPA axis by ovarian 

estrogen56,57). Thus, the gender difference in the increase in serum corticosterone levels due to exposure to 

acute restraint stress in Kir6.2-/- mice might involve activation of the HPA axis by ovarian estrogen. 

Moreover, as described in chapter 1, an increase in TPH level was observed in female Kir6.2-/- mice. 

The projection of 5-HT neuron from the midbrain raphe nuclei to the PVN is important for the activation of 

HPA axis58,59). Pharmacological stimulation of this pathway by acute administration of a selective serotonin 

reuptake inhibitor or 5-HT agonist increases plasma ACTH and corticosterone60–65). Gender differences in 

the central 5-HT system, such as decreased serotonin transporter binding in female rodents and humans or a 

greater stress-induced increase in amygdala 5-HT levels in females61,66,67), may influence the HPA axis 

response and/or feedback mechanisms essential for homeostatic maintenance. Considering these reports, 

central 5-HT nervous systems might also be involved in the gender difference of the stress response caused 

by deficiency of Kir6.2. 

On the other hand, it is necessary to examine whether Kir6.2 directly controls the HPA axis. The 

hippocampus regulates the endocrine stress system by modulating hypothalamic paraventricular nucleus 
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activity. Chronic dysregulation of the HPA axis in response to stress is associated with impaired 

glucocorticoid function and inhibition of negative feedback via the hippocampal GR50). Kir6.2 is highly 

expressed in regions associated with negative feedback such as the hippocampus, hypothalamus and 

pituitary28,48). Therefore, the next set of experiments focused on whether Kir6.2 is expressed in GR-positive 

cells in the CA1 and DG. The immunohistochemical analysis showed that Kir6.2 was expressed in 

GR-positive cells in the CA1 and DG of WT mice. Taken together, these results suggest that Kir6.2 could 

influence the HPA axis via GR regulation. One possible explanation for why excessive corticosterone 

secretion was observed in Kir6.2-/- mice after restraint stress is the dysregulation of negative feedback 

mechanisms via GR. 

In summary, the present study demonstrated that KATP channels including Kir6.2 can regulate stress 

responses such as corticosterone secretion via the HPA axis. In addition, because higher corticosterone 

concentrations were observed in female Kir6.2-/- mice exposed to acute restraint stress, there is a gender 

difference in this regulation. A possible mechanism for this regulation may involve the influence of Kir6.2 

on GR-positive cells in the hippocampus. Dysregulation of HPA axis is associated with mood 

disorders50,68,69). Although there are still many unanswered questions regarding the mechanisms of the 

relationship between Kir6.2 and the response to stress, the present study provides important evidence 

suggesting that KATP channels may be a novel target for the treatment of psychiatric disorders. 
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Conclusion 
 

In chapter 1, the present study demonstrated that KATP channels including Kir6.2 regulate emotional 

behaviors such as anxiety-like behavior, and a possible mechanism for such regulation may involve the 

influence of Kir6.2 on monoamine neurons in the brain. In particular, the observation of excessive 

anxiety-like behavior in female Kir6.2-/- mice might be due to the activation of brain 5-HT neurons. 

In chapter 2, the present study demonstrated that KATP channels including Kir6.2 can regulate stress 

responses such as corticosterone secretion via the HPA axis, and this regulation may involve the influence 

of Kir6.2 on GR-positive cells in the hippocampus. In addition, because higher corticosterone 

concentrations were observed in female Kir6.2-/- mice exposed to acute restraint stress, there is a gender 

difference in this regulation. 

The present study provides evidence that Kir6.2 on monoamine neurons, in particular 5-HT neurons, 

may be involved, at least in part, in the regulation of emotional behaviors and stress responses. Moreover, 

excessive anxiety-like behavior and stress responses in female Kir6.2-/- mice may be caused by the changes 

in the HPA axis activity induced by the 5-HT neurons activation. Rodent and human studies have shown 

that females exhibit higher levels of glucocorticoids in response to various stressors70-74). Furthermore, the 

prevalence of affective disorders is 2 times greater in females than males75), which may relate to gender 

differences in stress sensitivity and 5-HT neurocircuitry66,76-78).  

Although further studies are necessary in order to conclude a causal association between Kir6.2 and 

emotional regulation, the present findings provide new insights into the elucidation of why psychiatric 

disorders are greater in females.  
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