国際医療福祉大学審査学位論文(博士)

大学院医療福祉学研究科博士課程

A highly sensitive and rapid enzymatic method using a biochemical automated analyzer to detect inorganic pyrophosphate generated by nucleic acid sequence-based amplification

(邦題:Nucleicacidsequence-basedamplification反応生成物ピロリン酸の 高感度酵素的測定法の開発と生化学自動分析装置への応用)

2020年度

保健医療学専攻・臨床検査学分野・臨床検査学領域

学籍番号:18S3006 氏名:磯部 厚志

研究指導教員:梅村 創

副研究指導教員:清宮 正德

1 Abstract

2 Background and aims: Polymerase chain reaction-based techniques require expensive equipment for fluorescence detection of the products. However, the measurement of 3 4 inorganic pyrophosphate (PPi) released during DNA synthesis can be used to quantify target genes without such equipment. Here, we devised a high-sensitivity enzymatic assay 5 for detection of PPi. 6 Materials and methods: In our assay method, PPi was converted to hypoxanthine by 7 hypoxanthine phosphoribosyl transferase. Xanthine dehydrogenase converted the 8 9 hypoxanthine to uric acid and yielded two molecules of NADH, which in turn reduced Fe³⁺ to Fe²⁺ (mediated by 1-methoxy-5-ethylphenazinium ethylsulfate). 2-Nitroso-5-(N-10 propyl-N-sulfopropylamino) phenol chelated the Fe^{2+} , which resulted in an intensely 11 12 colored product that could be measured using a biochemical automated analyzer. **Results:** The assay was able to detect PPi within 10 min. It was linear between 0 and 10 13 14 µmol/L PPi, and intra-run and inter-run coefficients of variation were 1%-2%. Other validation tests with a biochemical automated analyzer were satisfactory. The assay could 15 16 potentially be used to directly quantify samples after isothermal nucleic acid sequence-17 based amplification of a target gene.

18 Conclusion: The method developed here for detection of PPi can be used to measure

19	nucleic acid biomarkers in biological samples in clinical practice using a high-throughput
20	biochemical automated analyzer.
21	
22	Keywords:
23	Inorganic pyrophosphate, Enzymatic method, Biochemical automated analyzer, Nucleic

- 24 acid sequence-based amplification, Nitroso-PSAP.

1	Titl	e:

2	A high-sensitivity and rapid enzymatic method using a biochemical automated analyzer
3	to detect inorganic pyrophosphate generated by nucleic acid sequence-based
4	amplification
5	
6	Authors:
7	Atsushi Isobe ^a , Yuki Iwabuchi ^a , Miki Yajima ^a , Shin-ichi Sakasegawa ^b , Yoshitaka
8	Yamaguchi ^c , Masanori Seimiya ^c , Tsukuru Umemura ^d , Susumu Osawa ^c
9	
10	Addresses:
11	^a Medical Laboratory Science, Graduate School of Health and Welfare Sciences,
12	International University of Health and Welfare, Kōzunomori, Narita, Chiba, Japan.
13	^b Asahi Kasei Pharma Corporation, Mifuku, Izunokuni, Shizuoka, Japan.
14	^c Department of Medical Technology and Sciences, School of Health Sciences at Narita,
15	International University of Health and Welfare, Kōzunomori, Narita, Chiba, Japan.
16	^d Department of Medical Technology and Sciences, School of Health Sciences at Okawa,
17	International University of Health and Welfare, Enokizu, Okawa, Fukuoka, Japan.
18	

19 Corresponding author: Atsushi Isobe

20	Medical Laboratory Science, Graduate School of Health and Welfare Sciences,
21	International University of Health and Welfare, 4-3 Kōzunomori, Narita, Chiba
22	286-8686, Japan.
23	Email: Atsushi_isobe@terumo.co.jp
24	
25	Abbreviations:
26	Polymerase chain reaction (PCR); Nucleic acid sequence-based amplification (NASBA);
27	Nucleoside triphosphate (NTP); Inorganic pyrophosphate (PPi); Hypoxanthine
28	phosphoribosyl transferase (HPT); Xanthine oxidase (XOD); Xanthine dehydrogenase
29	(XDH); Purine-nucleoside phosphorylase (PNP); Peroxidase (POD); Inorganic
30	pyrophosphatase (PPase); 1-Methoxy-5-ethylphenazinium ethylsulfate (1-methoxy PES);
31	2-Nitroso-5-(N-propyl-N-sulfopropylamino) phenol (Nitroso-PSAP).
32	
33	
34	
35	
36	

37 **1. Introduction**

Polymerase chain reaction (PCR)-based techniques, including reverse transcription-PCR 38 and real-time PCR, are the most commonly used methods to amplify and quantify a 39 40 specific target DNA. However, these techniques are not yet in widespread clinical use because the quantification of PCR products based on the coupling of fluorescently-41 42 labeled probes and amplicons requires expensive reagents, a specific detector, and welltrained staff. Nucleic acid sequence-based amplification (NASBA), which achieves 43 amplification of target RNA, is performed isothermally (at 41°C) [1]. However, the 44 techniques used to quantify the amplified RNA by hybridization of a fluorescent reagent 45 with the target are similar to those for PCR [1-3]. Development of a sensitive detection 46 method for inorganic pyrophosphate (PPi), which is formed by PCR amplification and 47 48 NASBA, would, if the product were colored, contribute to simplified quantification of specific target genes in clinical laboratories. 49

Methods for detecting PPi, which is released from deoxynucleoside triphosphates (dNTPs) during PCR amplification, can be used as a surrogate marker to confirm whether target sequence amplification has been completed and can be employed for diagnosis (for example, of cancer, viruses, and genetic disorders) [4–8]. Various methods have been developed to detect PPi, including fluorometric [5,9–11], ion chromatographic [12], enzyme-based colorimetric [4,13], and metal-complex-based colorimetric methods [6–8,14]. However, the fluorometric and ion chromatographic techniques are expensive, specialized, have low throughput, and require complex preparation [9,10]. Although colorimetric methods are attractive as easy procedures with a rapid response, conventional methods have low sensitivity and specificity and limited throughput capacity.

Therefore, here, we devise a sensitive enzymatic assay for detecting PPi. This 61 assay uses hypoxanthine phosphoribosyl transferase (HPT) as a key enzyme. HPT is 62 widely used to catalyze pyrophosphorolysis of inosine monophosphate (IMP) [15,16]. 63 There are several methods to measure IMP pyrophosphorolysis and phosphoribosyl 64 pyrophosphate using the combination of HPT and xanthine oxidase (XOD) [17,18]. 65 However, few studies have reported on the detection of PPi using HPT [4]. Our assay also 66 uses 2-nitroso-5-(N-propyl-N-sulfopropylamino) phenol (Nitroso-PSAP); this reagent 67 selectively forms a chelate with Fe^{2+} , which results in a highly colored product (molar 68 absorptivity 45,000 L cm⁻¹ M⁻¹ at 756 nm) [19]. This chelate has been used to quantify 69 non-transferrin-bound iron in serum [20]. Moreover, we applied the assay using a 70 71 biochemical automated analyzer to perform the diagnostic tests with rapidity and high throughput. We also developed methods combining NASBA and this enzymatic assay. 72

The assay developed in this study is expected to be valuable for diagnostic tests of nucleic
acid biomarkers in the clinical laboratory.

75

76 2. Materials and Methods

77 2.1. Principle of the method

Figure 1 shows the reaction sequences in our novel assay. PPi, which is derived from 78 DNA/RNA amplification, and IMP are converted to hypoxanthine and phosphoribosyl 79 pyrophosphate by HPT. The hypoxanthine produced is then converted to uric acid and 80 NADH, catalyzed by xanthine dehydrogenase (XDH). The NADH reacts with Fe³⁺ to 81 form NAD^+ and Fe^{2+} , mediated by 1-methoxy-5-ethylphenazinium ethylsulfate (1-82 methoxy PES). Nitroso-PSAP forms a green chelate complex with the Fe^{2+} . 83 84 2.2. Overproduction and purification of HPT from Escherichia coli K12 W3110 85 A synthetic gene encoding nicotinamide mononucleotide HPT from E. coli K12 W3110 86 (BAB96700) was synthesized by GenScript (Piscataway, NJ, USA). The synthetic gene 87 (0.54 kbp) contained NdeI and HindIII restriction sites at the 5'- and 3'- ends, 88 89 respectively. The gene was cloned into the corresponding sites in vector pET21a to yield EcHPT/pET21a. E. coli BL21 (DE3) cells were transformed with EcHPT/pET21a and 90

91	transformants were selected by growth on Luria-agar supplemented with ampicillin (50
92	μ g/mL). A single colony was then picked and cultured in 1.6 L of Overnight Express TM
93	Instant TB Medium (Novagen) containing 50 μ g/mL ampicillin for 24 h at 30°C. Cells
94	expressing HPT were harvested by centrifugation, suspended in 10 mmol/L Tris-HCl
95	buffer (pH 8.5), and then lysed by adding 0.5% lysozyme, 1 mmol/L EDTA, and 0.05%
96	Triton X-100, followed by a 1-h incubation at 37°C. After removing the cell debris by
97	centrifugation for 30 min at 5,000 \times g, the supernatant was loaded onto a column
98	containing 300 mL of Q Sepharose Big Beads pre-equilibrated with 10 mmol/L Tris-
99	HCl buffer (pH 8.5). After washing the column with the equilibration buffer, bound
100	protein was eluted with a linear gradient of 0 to 0.5 mol/L KCl in the same buffer.
101	Active fractions (see section 2.3 for assay details) were concentrated using a 30-kDa
102	centrifugal filter device (Millipore, Bedford, MA) and solid KCl was added to 3 mol/L.
103	The protein solution was applied to a 50-mL Phenyl Sepharose 6 Fast Flow column
104	(High Sub) pre-equilibrated with 10 mmol/L Tris-HCl buffer (pH 7.5) containing 3
105	mol/L KCl. The column was then washed with equilibration buffer and the bound
106	protein was eluted with a linear gradient of 3 to 0 mol/L KCl in the same buffer.
107	Fractions containing HPT activity were pooled, concentrated using a 30-kDa centrifugal
108	filter device, and dialyzed against 10 mmol/L Tris-HCl buffer (pH 8.5). The protein

109	solution was applied to a 25-mL Q Sepharose high-performance column pre-
110	equilibrated with 10 mmol/L Tris-HCl buffer (pH 8.5). The column was then washed
111	with equilibration buffer and the protein was eluted with a linear gradient of 0 to 0.5
112	mol/L KCl in the same buffer. Active fractions were pooled and then concentrated using
113	a 30-kDa centrifugal filter device. The sample was desalted by gel filtration
114	chromatography using a Sephadex G-25 Superfine column (GE Healthcare, IL, USA)
115	pre-equilibrated with 10 mmol/L Tris-HCl buffer (pH 7.5). The entire purification
116	procedure was performed at room temperature (<25 °C).
117	

2.3. Assay of HPT 118

Unless otherwise specified, HPT activity was routinely determined in a continuous 119 reaction entailing hypoxanthine formation from IMP and PPi and oxidation of 120 hypoxanthine to urate by XDH with concomitant conversion of NAD⁺ to NADH. 121 122 Standard reaction mixtures contained 20 mmol/L Tris-HCl buffer (pH 7.5), 5 mmol/L IMP, 5 mmol/L potassium pyrophosphate, 5 mmol/L NAD⁺, 5 mmol/L magnesium chloride, 123 and 5 kU/L XDH. The rate of NADH formation at 37°C was monitored 124 spectrophotometrically at 340 nm (molar absorptivity of NADH = $6,220 \text{ L cm}^{-1} \text{ M}^{-1}$). 125 One unit (U) of enzyme was defined as the amount of enzyme forming 1 µmol of NADH 126

127 per min.

128

129	2.4. Reagents for the determination of optimal assay parameters and equipment
130	Tris-buffered saline tablets were obtained from Takara Bio, Shiga, Japan. Nitroso-PSAP
131	and 1-methoxy PES were from Dojindo Molecular Technologies, Kumamoto, Japan. β -
132	NAD ⁺ was from Oriental Yeast Co., Tokyo, Japan. Magnesium chloride, inosine-5'-
133	monophosphte, ferric chloride, potassium sodium tartrate, and potassium pyrophosphate
134	were obtained from FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan. XDH
135	(EC 1.17.1.4; from microorganisms) was from Asahi Kasei Pharma Corporation, Tokyo,
136	Japan. Uridine 5'-triphosphate trisodium salt hydrate was obtained from Tokyo Chemical
137	Industry Co., Tokyo, Japan. Guanosine 5'-triphosphate sodium salt hydrate, adenosine 5'-
138	triphosphate disodium salt, and cytidine 5'-triphosphate disodium salt were obtained from
139	Sigma Aldrich Japan, Tokyo, Japan. Optimal assay parameters such as reagent
140	concentrations were determined using a Hitachi 7012 clinical spectrophotometer (Hitachi
141	High-Technologies Co., Tokyo, Japan).
142	

143 2.5. Reagents for the enzymatic assay using a biochemical automated analyzer

144 Tris-buffered saline tablets, Nitroso-PSAP, 1-methoxy PES, β -NAD⁺, magnesium

145	chloride, inosine-5'-monophosphte, ferric chloride, potassium sodium tartrate, potassium
146	pyrophosphate, and XDH were obtained from the suppliers listed in section 2.4. A two-
147	reagent system was used in the assay in the biochemical automated analyzer. Reagent-1
148	for our novel method (RN1) consisted of 50 mmol/L Tris-HCl buffer (pH 8.0), 0.2 mmol/L
149	ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L Nitroso-PSAP.
150	Reagent-2 (RN2) contained 50 mmol/L Tris-HCl buffer (pH 8.0), 8.0 mmol/L β -NAD ⁺ ,
151	8.0 mmol/L inosine-5'-monophosphte, 0.5 mmol/L magnesium chloride, 0.4 kU/L HPT,
152	3.84 kU/L XDH, and 2.0 $\mu mol/L$ 1-methoxy PES. Standard solution was prepared by
153	dissolving 10 µmol/L PPi in distilled water.
154	

155 2.6. Reagents for phosphate test kit Pi-L with PPase for use in the biochemical automated156 analyzer

Phosphate test kit Pi-L was obtained from Serotec Co., Hokkaido, Japan. Inorganic
pyrophosphatase (PPase; EC 3.6.1.1; from *Thermococcus* sp.) was from New England
Biolabs, MA, USA. A two-reagent system was used in the assay in the biochemical
automated analyzer. Reagent-1 for the control method (RC1) consisted of 20 mmol/L
Good's buffer (pH 7.0), 0.95 kU/L ascorbate oxidase, 1.5 kU/L XOD, 300 kU/L catalase,
12.0 mmol/L xanthosine, and 0.85 mmol/L N-(2-hydroxy-3-sulfopropyl)-3,5-

163	dimethoxyaniline, sodium salt. Then, 1.0 kU/L PPase was added to RC1. Reagent-2
164	(RC2) contained 20 mmol/L Good's buffer (pH 7.0), 5.0 kU/L purine-nucleoside
165	phosphorylase (PNP), 5.6 kU/L peroxidase (POD), and 2.88 mmol/L 4-aminoantipyrine.
166	Standard solution was prepared by dissolving 10 µmol/L PPi in distilled water.
167	
168	2.7. Materials for total RNA extraction, NASBA, and gel electrophoresis
169	Human dermal fibroblasts were obtained from Kurabo Industries, Osaka, Japan. Total
170	RNA extraction reagent RNAiso Plus was obtained from Takara Bio, Shiga, Japan. An
171	NASBA kit was purchased from KAINOS Laboratories, Tokyo, Japan. FastGene 50-bp
172	DNA Ladder and Midori Green Advance DNA Stain were from NIPPON Genetic Co.,
173	Tokyo, Japan.
174	
175	2.8. Biochemical automated analyzer
176	Assays were performed using a Hitachi 7180 Biochemical Automated Analyzer (Hitachi
177	High-Technologies Co.).
178	
179	2.8.1 Analytical conditions for the novel method designed in this work using the
180	biochemical automated analyzer

Ten microliters of sample were incubated with 110 µL of RN1 (see section 2.5) for 5 min
at 37°C. Then, 60 µL of RN2 was added. After 5 min, the absorbance at 750/600 nm
(primary/secondary) was measured using a two-point end assay.
2.8.2 Analytical conditions for the conventional method for inorganic phosphate
determination with PPase using the biochemical automated analyzer
Sample (3.1 µL) was incubated with 150 µL RC1 (see section 2.6) for 5 min at 37°C.

Then, 50 μL RC2 were added. After 5 min, the absorbance at 600/800 nm
(primary/secondary) was measured using a two-point end assay.

190

191 2.9. Correlation between the control method (using PPase, PNP, XOD and POD) and our

192 novel method (using HPT, XDH, and Fe) for determination of PPi

193 The control method was performed by adding PPase to phosphate test kit Pi-L because

194 no enzymatic assay for PPi using a biochemical automated analyzer has previously been

- 195 established. Phosphate test kit Pi-L was employed as it is a commercially available
- 196 product using the PNP-XOD-POD method for determination of inorganic phosphate
- 197 [21,22]. PPi reference solution (0 to $10 \,\mu mol/L$) was measured by the control method and
- 198 our novel method using the biochemical automated analyzer.

200 2.10. Total RNA extraction

Total RNA was extracted from spheres coated with human dermal fibroblasts using total RNA extraction reagent RNAiso Plus. According to the instruction manual, precipitated RNA was dissolved in DNase- and RNase-free water. The amount of RNA sample was quantified using a ratio beam spectrophotometer U-5100 (Hitachi High-Technologies Co.) and diluted to $0.1 \mu g/5 \mu L$ with the DNase- and RNase-free water.

217	Advance DNA Stain, and 10 μ L of NASBA sample was used for enzymatic PPi assay
218	using the biochemical automated analyzer.

220 2.12. St	atistical ana	lysis
--------------	---------------	-------

- 221 Results are presented as the mean \pm standard deviation (SD) and coefficients of variation
- 222 (CVs) were determined using Microsoft Excel® 2016. The linearity and correlation
- 223 between the control method and our novel method were calculated using Validation-
- Support/Excel V4.18 guaranteed by the Japan Society of Clinical Chemistry, aspreviously described [23].
- 226

227 **3. Results**

- 228 3.1. Determination of optimum parameters for the assay
- HPT was expressed in and purified from E. coli. Approximately 5,170 U of purified
- enzyme was obtained from 1.6 L of culture. The purified recombinant protein ran with an
- apparent molecular mass of 20 kDa on SDS-PAGE, in good agreement with the expected
- 232 mass based on the amino acid sequence (20,115 Da).
- The optimum pH for the combined assay using HPT and XDH was 8.0 (data not
- 234 shown). The optimum concentrations of β -NAD⁺ and inosine-5'-monophosphte were

236shown). Graphs of the enzymatic activity of HPT and XDH toward PPi are show237Figure 2. The absorbance at 340 nm was measured 5 min after starting the enzym238reaction. With enzymatic activity above 0.4 kU/L for HPT and 3.84 kU/L for XDH239absorbance at 340 nm (indicating formation of NADH) almost plateaued; thus240enzymes reached a steady-state and the reactions were complete within 5 min.241optimum concentration of magnesium chloride was 0.5 mmol/L (data not shown).242presence of Mg ²⁺ made HPT highly active. Color development from 0.2 mmol/L f243chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L Nitroso-PSAP244completed within 5 min using 2.0 μmol/L 1-methoxy PES (data not shown).245Thus, we determined that the optimum reagent conditions were: 50 mmol/L246HCI buffer (pH 8.0), 8.0 mmol/L β-NAD ⁺ , 8.0 mmol/L inosine-5'-monophosphte247mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 μmol/L 1-methor248PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm249Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to240μmol/L PPi solution under the optimized reagent conditions (data not shown).251	235	each 8.0 mmol/L, which indicates a zero-order reaction of HPT and XDH (data not
Figure 2. The absorbance at 340 nm was measured 5 min after starting the enzyr reaction. With enzymatic activity above 0.4 kU/L for HPT and 3.84 kU/L for XDH absorbance at 340 nm (indicating formation of NADH) almost plateaued; thus enzymes reached a steady-state and the reactions were complete within 5 min. optimum concentration of magnesium chloride was 0.5 mmol/L (data not shown). presence of Mg ²⁺ made HPT highly active. Color development from 0.2 mmol/L f chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L Nitroso-PSAP completed within 5 min using 2.0 µmol/L 1-methoxy PES (data not shown). Thus, we determined that the optimum reagent conditions were: 50 mmol/L HCl buffer (pH 8.0), 8.0 mmol/L β -NAD ⁺ , 8.0 mmol/L inosine-5'-monophosphte mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 µmol/L 1-methors PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to µmol/L PPi solution under the optimized reagent conditions (data not shown).	236	shown). Graphs of the enzymatic activity of HPT and XDH toward PPi are shown in
reaction. With enzymatic activity above 0.4 kU/L for HPT and 3.84 kU/L for XDH absorbance at 340 nm (indicating formation of NADH) almost plateaued; thus enzymes reached a steady-state and the reactions were complete within 5 min. optimum concentration of magnesium chloride was 0.5 mmol/L (data not shown). presence of Mg ²⁺ made HPT highly active. Color development from 0.2 mmol/L f chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L Nitroso-PSAP completed within 5 min using 2.0 μ mol/L 1-methoxy PES (data not shown). Thus, we determined that the optimum reagent conditions were: 50 mmol/L HCl buffer (pH 8.0), 8.0 mmol/L β -NAD ⁺ , 8.0 mmol/L inosine-5'-monophosphte mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 μ mol/L 1-met PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to μ mol/L PPi solution under the optimized reagent conditions (data not shown).	237	Figure 2. The absorbance at 340 nm was measured 5 min after starting the enzymatic
239absorbance at 340 nm (indicating formation of NADH) almost plateaued; thus240enzymes reached a steady-state and the reactions were complete within 5 min.241optimum concentration of magnesium chloride was 0.5 mmol/L (data not shown).242presence of Mg^{2+} made HPT highly active. Color development from 0.2 mmol/L f243chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L Nitroso-PSAP244completed within 5 min using 2.0 µmol/L 1-methoxy PES (data not shown).245Thus, we determined that the optimum reagent conditions were: 50 mmol/L246HCI buffer (pH 8.0), 8.0 mmol/L β-NAD ⁺ , 8.0 mmol/L inosine-5'-monophosphte247mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 µmol/L 1-meti248PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mn249Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to250µmol/L PPi solution under the optimized reagent conditions (data not shown).251	238	reaction. With enzymatic activity above 0.4 kU/L for HPT and 3.84 kU/L for XDH, the
240enzymes reached a steady-state and the reactions were complete within 5 min.241optimum concentration of magnesium chloride was 0.5 mmol/L (data not shown).242presence of Mg^{2+} made HPT highly active. Color development from 0.2 mmol/L f243chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L Nitroso-PSAP244completed within 5 min using 2.0 µmol/L 1-methoxy PES (data not shown).245Thus, we determined that the optimum reagent conditions were: 50 mmol/L246HCl buffer (pH 8.0), 8.0 mmol/L β-NAD+, 8.0 mmol/L inosine-5'-monophosphte247mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 µmol/L 1-methory248PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm249Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to250µmol/L PPi solution under the optimized reagent conditions (data not shown).251	239	absorbance at 340 nm (indicating formation of NADH) almost plateaued; thus, the
241optimum concentration of magnesium chloride was 0.5 mmol/L (data not shown).242presence of Mg^{2+} made HPT highly active. Color development from 0.2 mmol/L f243chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L Nitroso-PSAP244completed within 5 min using 2.0 µmol/L 1-methoxy PES (data not shown).245Thus, we determined that the optimum reagent conditions were: 50 mmol/L246HCl buffer (pH 8.0), 8.0 mmol/L β -NAD ⁺ , 8.0 mmol/L inosine-5'-monophosphte247mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 µmol/L 1-met248PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm249Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to250µmol/L PPi solution under the optimized reagent conditions (data not shown).251	240	enzymes reached a steady-state and the reactions were complete within 5 min. The
 presence of Mg²⁺ made HPT highly active. Color development from 0.2 mmol/L f chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L Nitroso-PSAP completed within 5 min using 2.0 µmol/L 1-methoxy PES (data not shown). Thus, we determined that the optimum reagent conditions were: 50 mmol/L HCl buffer (pH 8.0), 8.0 mmol/L β-NAD⁺, 8.0 mmol/L inosine-5'-monophosphte mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 µmol/L 1-met PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to µmol/L PPi solution under the optimized reagent conditions (data not shown). 	241	optimum concentration of magnesium chloride was 0.5 mmol/L (data not shown). The
 chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L Nitroso-PSAP completed within 5 min using 2.0 μmol/L 1-methoxy PES (data not shown). Thus, we determined that the optimum reagent conditions were: 50 mmol/L HCI buffer (pH 8.0), 8.0 mmol/L β-NAD⁺, 8.0 mmol/L inosine-5'-monophosphte mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 μmol/L 1-met PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to μmol/L PPi solution under the optimized reagent conditions (data not shown). 	242	presence of Mg ²⁺ made HPT highly active. Color development from 0.2 mmol/L ferric
 completed within 5 min using 2.0 μmol/L 1-methoxy PES (data not shown). Thus, we determined that the optimum reagent conditions were: 50 mmol/L HCl buffer (pH 8.0), 8.0 mmol/L β-NAD⁺, 8.0 mmol/L inosine-5'-monophosphte mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 μmol/L 1-met PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to μmol/L PPi solution under the optimized reagent conditions (data not shown). 	243	chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L Nitroso-PSAP was
Thus, we determined that the optimum reagent conditions were: 50 mmol/L HCl buffer (pH 8.0), 8.0 mmol/L β -NAD ⁺ , 8.0 mmol/L inosine-5'-monophosphte mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 μ mol/L 1-met PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to μ mol/L PPi solution under the optimized reagent conditions (data not shown).	244	completed within 5 min using 2.0 μ mol/L 1-methoxy PES (data not shown).
 HCl buffer (pH 8.0), 8.0 mmol/L β-NAD⁺, 8.0 mmol/L inosine-5'-monophosphte mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 µmol/L 1-met PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to µmol/L PPi solution under the optimized reagent conditions (data not shown). 	245	Thus, we determined that the optimum reagent conditions were: 50 mmol/L Tris-
 mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 µmol/L 1-met PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to µmol/L PPi solution under the optimized reagent conditions (data not shown). 	246	HCl buffer (pH 8.0), 8.0 mmol/L β -NAD ⁺ , 8.0 mmol/L inosine-5'-monophosphte, 0.5
 PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mm Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to µmol/L PPi solution under the optimized reagent conditions (data not shown). 	247	mmol/L magnesium chloride, 0.4 kU/L HPT, 3.84 kU/L XDH, 2.0 µmol/L 1-methoxy
 Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to µmol/L PPi solution under the optimized reagent conditions (data not shown). 	248	PES, 0.2 mmol/L ferric chloride, 0.4 mmol/L potassium sodium tartrate, and 0.8 mmol/L
 µmol/L PPi solution under the optimized reagent conditions (data not shown). 	249	Nitroso-PSAP. We confirmed the linearity of the determined concentration for 0 to 100
251	250	µmol/L PPi solution under the optimized reagent conditions (data not shown).
	251	

252 3.2. Specificity of the assay

253	NTPs, including uridine, guanosine, adenosine, and cytidine 5'-triphosphate, are essential
254	materials for the amplification reactions of RNA; however, these materials may in
255	principle interfere with the enzymatic assay described in this work. NASBA reagent
256	contains 2 mmol/L NTPs [24]. The specificity of our enzymatic assay was examined using
257	2 mmol/L NTPs in distilled water. Each solution was measured with three replicates. The
258	concentration of each solution of NTPs was compared with that of a reference sample
259	(distilled water without NTPs). The concentrations of PPi represented by the assay were
260	the same as those in the reference sample, which indicates that the assay was not
261	significantly affected by NTPs at up to 2 mmol/L.
262	
263	3.3. Linearity
264	The linearity of the assay was measured using working solutions of up to 10 μ mol/L PPi.

265 Each solution was assessed with five replicates. A plot of theoretical vs. measured values

of PPi had a slope of 1.039 and an intercept of +0.349, which indicates satisfactory

267 linearity up to 10 μmol/L PPi.

268

269 3.4. Precision

270 Intra- and inter-assay CVs were determined using water-diluted PPi standard solution

271	with five and two different concentrations, respectively. Each solution for intra-assay
272	determination was measured with 20 replicates on the same day. Each solution for inter-
273	assay determination was measured with two replicates for 20 days, and calibration was
274	conducted on each day. The intra-assay CVs of samples with low (2.27 μ mol/L), medium
275	(6.85 μ mol/L), and high (8.70 μ mol/L) PPi concentrations were 1.76%, 1.02%, and 0.57%,
276	respectively. The inter-assay CVs during measurements over the 20-day period were
277	1.27% (4.74 μ mol/L), and 0.69% (8.72 μ mol/L).
278	
279	3.5. Limit of detection (LOD) and limit of quantification (LOQ)
280	LOD and LOQ were estimated using water-diluted PPi standard solution with 10
281	replicates. LOD was based on the difference of three standard deviations between the
282	zero-concentration sample (purified water) and the lowest concentration sample. LOQ
283	was defined as the lowest concentration that showed a CV of $\leq 20\%$. The LOD and LOQ
284	for detecting PPi using the biochemical automated analyzer were 0.15 μ mol/L and 1.00
285	μmol/L, respectively.
286	
287	3.6. Correlation between the control assay method (using PPase, PNP, XOD, and POD)
288	and our novel method (using HPT, XDH, and Fe) in determination of PPi

289	The concentrations of PPi measured by the control enzymatic method were compared
290	with those measured by the novel method developed in this study. Thirty PPi solutions
291	(0–10 μ mol/L) were measured by both methods. A plot of the concentrations of PPi
292	determined by the two methods had a slope of 0.938, an intercept of -0.214 , Spearman's
293	rank correlation coefficient (r) of 0.999, and Sy \cdot x of 0.32 (Figure 3). These results suggest
294	that our method is suitable for the measurement of PPi using the biochemical automated
295	analyzer.
296	
297	3.7. Combination of NASBA with the novel enzymatic method
298	NASBA products were detected by agarose gel electrophoresis (Figure 4). The intensity
299	of each band was proportional to the amplification time, which indicates that the quantity
300	of product, and hence the amount of released PPi, increased with amplification time.
301	No PPi was detected in the NASBA negative control reaction by our enzymatic
302	method using the biochemical automated analyzer (Figure 4). However, PPi was
303	detectable after a 20-min amplification when a 0.1 -µg total RNA sample was used, which
304	indicates that the concentration of released PPi was over the LOD and LOQ. The
305	concentration of PPi detected increased with the NASBA reaction time. These results
306	show that the combination of NASBA and our enzymatic assay method can be applied to

the detection of PPi released by RNA amplification, which has great potential for
 measuring nucleic acid-based biomarkers in biological samples.

309

310 4. Discussion

PCR-based techniques are the most widely used methods for nucleic acid amplification 311 for clinical diagnostics. Several other techniques relating to signal and target 312 amplification, such as NASBA, have also been developed and used clinically. However, 313 some clinical laboratories, especially in small hospitals, have not benefited from these 314 techniques. Direct detection systems based on fluorescence-labeled hybridization probes 315 and DNA or RNA amplicon-labeling fluorescence dyes require complicated procedures, 316 skilled staff, and long detection time. Therefore, here, we developed a rapid, sensitive, 317 and specific detection method for PPi formed by nucleic acid amplification methods 318 including PCR and NASBA. The detection uses visible absorbance (i.e., color). Thus, the 319 present method can be used to measure PPi without fluorescence-based systems and 320 contribute to simple and quick quantification of target DNA and RNA in the clinical 321 laboratory. 322

323 Several methods involving fluorometric and colorimetric techniques have been 324 developed for the measurement of PPi produced by various biological reactions.

325	Fluorometric assay for the detection of PPi has high sensitivity based on fluorescence of,
326	for example, luciferin or spiropyran [5,9-11]. However, these methods are not always
327	applicable in clinical practice because of limited throughput capacity and the requirement
328	for an expensive fluorescence detector. Enzyme-based colorimetric assays for PPi based
329	on formazan, generated from tetrazolium salts, have also been reported [4,13]. However,
330	the formazan dye is too water-insoluble to use in clinical practice; an extra procedure to
331	dissolve it in an organic solvent or detergent is needed and repeatedly-used optical cells
332	attached to the biochemical automated analyzer thus become dirty [25]. A new sulfonated
333	tetrazolium salt, which generates a highly water-soluble formazan dye with molar
334	absorptivity of 37,000 L cm ^{-1} M ^{-1} at 438 nm, has been developed [26]. However, the
335	molar absorptivity of this dye is less than that of the chelate complex of Nitroso-PSAP
336	and Fe ²⁺ used in the present study (45,000 L cm ^{-1} M ^{-1} at 756 nm). Although an assay for
337	the detection of PPi using HPT and XOD/XDH has been reported, it cannot be applied
338	for clinical laboratory use because of the lack of validation with biochemical automated
339	analyzers and the requirement for use of formazan dye with the associated problems
340	described above [4]. The novel enzymatic method described in this report gives highly
341	sensitive and specific detection of PPi that can be validated and used in clinical settings.
342	PPase catalyzes the hydrolysis of PPi to form inorganic phosphate [27].

343	Measurement methods for inorganic phosphate using PNP and XOD/XDH have been
344	established and used in the clinical laboratory [21,22,27]. A sensitive enzymatic method
345	for the determination of PPi could be established if PPase, PNP, and XOD/XDH were
346	combined; this reaction forms four molecules of NADH or H ₂ O ₂ . However, the PPase-
347	PNP-XOD/XDH method is not specific because of cross-reaction with triphosphates,
348	substrates that are required for DNA or RNA amplification. Also, use of buffers
349	containing inorganic phosphate would have an obvious effect on measurements made by
350	the PPase-PNP-XOD/XDH method. Therefore, in the present method, HPT was
351	employed as the enzyme reacting with PPi. Although the two molecules of NADH
352	produced by HPT-XDH reaction in this method are two fewer than are produced in the
353	PPase-PNP-XOD/XDH method, the present method had high sensitivity-a LOQ of 1
354	μ mol/L PPi—because of the sensitive chelating reagent with high molar absorptivity that
355	was used for detection.

361	primers and RNA [1]. The present method can thus be performed isothermally at 41°C,
362	at which all the enzymes will remain active. Thus, both amplification and detection may
363	occur in a single cell attached to a biochemical automated analyzer. Primer design that
364	accelerates amplification of the specific target and minimizes nonspecific reactions, such
365	as primer dimerization, would be important for high specificity of the method.
366	Infectious diseases and cancers are leading causes of mortality worldwide [28].
367	PCR-based techniques are the best strategy to detect/diagnose pathogens [29]. Gene
368	overexpression assays have provided information on the recurrence of breast cancer [30],
369	and the detection of circulating tumor DNA in plasma enables monitoring of early
370	metastasis of breast cancer [31]. Thus, genome-based diagnostics play an increasingly
371	important role in treating infectious diseases and cancers around the world. Combination
372	of the novel method described in this work with modified NASBA with primers linked to
373	specific target genes may be useful for the diagnosis of, for example, pathogens and
374	cancer progression. Our method will contribute globally to clinical laboratory practice
375	because of its simplicity and high-throughput capacity. A measurement method of target
376	genes using PCR at a constant temperature of 37°C has been reported [32]. If this method
377	could be combined with the present PPi assay, it would be possible to detect specific
378	target genes rapidly and easily in a wide range of clinical laboratories.

In conclusion, we have developed an enzymatic assay for detecting PPi released during NASBA using a biochemical automated analyzer to permit wide use in daily practice.

382

383 Acknowledgements

The present study was supported in part by Asahi Kasei Pharma Corporation and KAINOS Laboratories. The authors are grateful to their staff for technical advice and reagents. We thank Edanz Group (<u>https://en-author-services.edanzgroup.com/ac</u>) for editing a draft of this manuscript.

388

389 CRediT authorship contribution statement

Atsushi Isobe: Formal analysis, Data curation, Investigation, Methodology, Writing original draft. Yuki Iwabuchi: Formal analysis. Miki Yajima: Formal analysis. Shin-ichi
Sakasegawa: Resources, Writing - review & editing. Yoshitaka Yamaguchi: Resources,
Data curation. Masanori Seimiya: Writing - review & editing. Tsukuru Umemura:
Investigation, Project administration, Writing - review & editing. Susumu Osawa:
Conceptualization, Investigation, Writing - review & editing, Funding acquisition,
Supervision.

398	Fund	ing
399	This	research did not receive any specific grant from funding agencies in the public,
400	comn	nercial, or not-for-profit sectors.
401		
402	Decla	aration of interest
403	Atsus	hi Isobe is an employee of TERUMO Corporation. However, this work was not
404	perfo	rmed in his capacity as an employee. Shin-ichi Sakasegawa is an employee of Asahi
405	Kasei	Pharma Corporation. All other authors have no conflicts of interest.
406		
407	Refei	ences
408	[1]	B. Deiman, P. van Aarle, P. Sillekens, Characteristics and Applications of
409		Nucleic Acid Sequence-Based Amplification (NASBA), Mol. Biotechnol. 20
410		(2002) 163-180. https://doi.org/10.1385/MB:20:2:163.
411	[2]	G. Leone, B. van Gemen, C.D. Schoen, H. van Schijndel, F.R. Kramer,
412		Molecular beacon probes combined with amplification by NASBA enable
413		homogeneous, real-time detection of RNA, Nucleic Acids Res. 26 (1998) 2150-
414		2155. https://doi.org/10.1093/nar/26.9.2150.

415	[3]	T. Hayashi, H. Kobayashi, H. Miyachi, T. Ohshima, A competitive nucleic acid
416		sequence-based amplification assay for the quantification of human MDR1
417		transcript in leukemia cells, 342 (2004) 115–126.
418		https://doi.org/10.1016/j.cccn.2003.12.013.
419	[4]	M. Tagiri-Endo, A colorimetric assay for inorganic pyrophosphate that is also
420		useful for measuring product accumulation in polymerase chain reactions, Anal.
421		Biochem. 315 (2003) 170–174. https://doi.org/10.1016/S0003-2697(03)00003-4.
422	[5]	M. Nygren, M. Ronaghi, P. Nyrén, J. Albert, J. Lundeberg, Quantification of
423		HIV-1 Using Multiple Quantitative Polymerase Chain Reaction Standards and
424		Bioluminometric Detection, Anal. Biochem. 288 (2001) 28-38.
425		https://doi.org/10.1006/ABIO.2000.4871.
426	[6]	E. Durward, W.J. Harris, Colorimetric Method for Detecting Amplified Nucleic
427		Acids, Biotechniques. 25 (1998) 608-614. https://doi.org/10.2144/98254st01.
428	[7]	K. Lee, K. Kim, A colorimetric confirmation method for DNA amplification in
429		PCR and its application to the detection of Giardia lamblia cysts, Biotechnol.
430		Lett. 25 (2003) 1739–1742. https://doi.org/10.1023/A:1026035628935.
431	[8]	N.J. Gibson, C.R. Newton, S. Little, A Colorimetric Assay for Phosphate to
432		Measure Amplicon Accumulation in Polymerase Chain Reaction, Anal.

433		Biochem. 254 (1997) 18-22. https://doi.org/10.1006/ABIO.1997.2324.
434	[9]	N. Shao, H. Wang, X. Gao, R. Yang, W. Chan, Spiropyran-based fluorescent
435		anion probe and its application for urinary pyrophosphate detection, Anal. Chem.
436		82 (2010) 4628–4636. https://doi.org/10.1021/ac1008089.
437	[10]	T. Tabary, LY. Ju, J.H.M. Cohen, Homogeneous phase pyrophosphate (PPi)
438		measurement (H3PIM) A non-radioactive, quantitative detection system for
439		nucleic acid specific hybridization methodologies including gene amplification,
440		J. Immunol. Methods. 156 (1992) 55-60. https://doi.org/10.1016/0022-
441		1759(92)90010-Q.
442	[11]	P. Nyrén, A. Lundin, Enzymatic method for continuous monitoring of inorganic
443		pyrophosphate synthesis, Anal. Biochem. 151 (1985) 504-509.
444		https://doi.org/10.1016/0003-2697(85)90211-8.
445	[12]	B. M. SIMONET, F. GRASES, J. G. MARCH, Enzymatic Determination of
446		Pyrophosphate in Urine by Flow Methods, Anal. Sci. 19 (2003) 1029–1032.
447		https://doi.org/10.2116/analsci.19.1029.
448	[13]	G. Lust, J.E. Seegmiller, A rapid, enzymatic assay for measurement of inorganic
449		pyrophosphate in biological samples, Clin. Chim. Acta. 66 (1976) 241–249.
450		https://doi.org/10.1016/0009-8981(76)90061-9.

451	[14]	J. Deng, P. Yu, L. Yang, L. Mao, Competitive coordination of Cu2+ between
452		cysteine and pyrophosphate ion: Toward sensitive and selective sensing of
453		pyrophosphate ion in synovial fluid of arthritis patients, Anal. Chem. 85 (2013)
454		2516-2522. https://doi.org/10.1021/ac303698p.
455	[15]	S.P. Craig, A.E. Eakin, Purine phosphoribosyltransferases., J. Biol. Chem. 275
456		(2000) 20231-4. https://doi.org/10.1074/jbc.R000002200.
457	[16]	B. Canyuk, F.J. Medrano, M.A. Wenck, P.J. Focia, A.E. Eakin, S.P. Craig,
458		Interactions at the Dimer Interface Influence the Relative Efficiencies for Purine
459		Nucleotide Synthesis and Pyrophosphorolysis in a Phosphoribosyltransferase, J.
460		Mol. Biol. 335 (2004) 905–921. https://doi.org/10.1016/J.JMB.2003.11.012.
461	[17]	C. Salerno, A. Giacomello, E. Messina, A spectrophotometric method for the
462		determination of 5-phosphoribosyl-1-pyrophosphate, Experientia. 35 (1979)
463		1016-1017. https://doi.org/10.1007/BF01949914.
464	[18]	C. Salerno, A. Giacomello, An enzymatic spectrophotometric assay for inosinic
465		acid, Experientia. 37 (1981) 223–224. https://doi.org/10.1007/BF01991621.
466	[19]	N. Nakajima, Y. Ito, K. Yokoyama, A. Uno, K. Kato, A. Iwasaki, Y. Arakawa,
467		N. Kinukawa, N. Nemoto, E.R. Lacy, Relationship between hyposalivation the
468		Society for Free Radical Research Japan 1880 50860912-0009 10.3164/j9cb .16-

469		79 JJCBN Kyj bn16-7 Original Article c oto, Japan ournal of Clinical
470		Biochemistry and Nutrition and oxidative stress in aging mice, J. Clin. Biochem.
471		Nutr. 128 (2005) A401-A402. https://doi.org/10.3164/jcbn.16.
472	[20]	S. Ito, K. Ikuta, D. Kato, K. Shibusa, N. Niizeki, H. Tanaka, L. Addo, Y. Toki,
473		M. Hatayama, J. Inamura, M. Shindo, K. Sasaki, N. Iizuka, M. Fujiya, Y.
474		Torimoto, Y. Kohgo, Non-transferrin-bound iron assay system utilizing a
475		conventional automated analyzer, Clin. Chim. Acta. 437 (2014) 129-135.
476		https://doi.org/10.1016/j.cca.2014.07.013.
477	[21]	H. De Groot, H. De Groot, T. Noll, Enzymic determination of inorganic
478		phosphates, organic phosphates and phosphate-liberating enzymes by use of
479		nucleoside phosphorylase-xanthine oxidase (dehydrogenase)-coupled reactions,
480		Biochem. J. 230 (1985) 255–260. https://doi.org/10.1042/bj2300255.
481	[22]	Y. Machida, T. Nakanishi, Properties of purine nucleoside phosphorylase from
482		enterobacter cloacae, Agric. Biol. Chem. 45 (1981) 1801-1807.
483		https://doi.org/10.1080/00021369.1981.10864796.
484	[23]	M. Kawano, E. Hokazono, S. Osawa, S. Sato, T. Tateishi, M. Manabe, H. Matsui,
485		Y. Kayamori, A novel assay for triglycerides using glycerol dehydrogenase and a
486		water-soluble formazan dye, WST-8., Ann. Clin. Biochem. 56 (2019) 442-449.

487 https://doi.org/10.1177/0004563219830715.

488	[24]	L. Malek, R. Sooknanan, J. Compton, Nucleic Acid Sequence-Based
489		Amplification (NASBA TM), in: Protoc. Nucleic Acid Anal. by Nonradioactive
490		Probes, Humana Press, New Jersey, 1994: pp. 253–260.
491		https://doi.org/10.1385/0-89603-254-X:253.
492	[25]	M. ISHIYAMA, Y. MIYAZONO, M. SHIGA, K. SASAMOTO, Y. OHKURA,
493		K. UENO, Benzothiazole-Containing Tetrazolium Salts That Produce Water-
494		Soluble Formazan Dyes Absorbing at a Long Wavelength upon NADH
495		Reduction., Anal. Sci. 12 (1996) 515–519. https://doi.org/10.2116/analsci.12.515.
496	[26]	M. ISHIYAMA, M. SHIGA, K. SASAMOTO, M. MIZOGUCHI, P. HE, A New
497		Sulfonated Tetrazolium Salt That Produces a Highly Water-Soluble Formazan
498		Dye., Chem. Pharm. Bull. (Tokyo). 41 (1993) 1118–1122.
499		https://doi.org/10.1248/cpb.41.1118.
500	[27]	J.K. Heinonen, R.J. Lahti, A new and convenient colorimetric determination of
501		inorganic orthophosphate and its application to the assay of inorganic
502		pyrophosphatase, Anal. Biochem. 113 (1981) 313-317.
503		https://doi.org/10.1016/0003-2697(81)90082-8.
504	[28]	M. Naghavi, A.A. Abajobir, C. Abbafati, K.M. Abbas, F. Abd-Allah, S.F. Abera,

505	V. Aboyans, O. Adetokunboh, A. Afshin, A. Agrawal, A. Ahmadi, M.B. Ahmed,
506	A.N. Aichour, M.T.E. Aichour, I. Aichour, S. Aiyar, F. Alahdab, Z. Al-Aly, K.
507	Alam, N. Alam, T. Alam, K.A. Alene, A. Al-Eyadhy, S.D. Ali, R. Alizadeh-
508	Navaei, J.M. Alkaabi, A. Alkerwi, F. Alla, P. Allebeck, C. Allen, R. Al-Raddadi,
509	U. Alsharif, K.A. Altirkawi, N. Alvis-Guzman, A.T. Amare, E. Amini, W.
510	Ammar, Y.A. Amoako, N. Anber, H.H. Andersen, C.L. Andrei, S. Androudi, H.
511	Ansari, C.A.T. Antonio, P. Anwari, J. Ärnlöv, M. Arora, A. Artaman, K.K.
512	Aryal, H. Asayesh, S.W. Asgedom, T.M. Atey, L. Avila-Burgos, E.F.G.
513	Avokpaho, A. Awasthi, T.K. Babalola, U. Bacha, K. Balakrishnan, A. Barac,
514	M.A. Barboza, S.L. Barker-Collo, S. Barquera, L. Barregard, L.H. Barrero, B.T.
515	Baune, N. Bedi, E. Beghi, Y. Béjot, B.B. Bekele, M.L. Bell, J.R. Bennett, I.M.
516	Bensenor, A. Berhane, E. Bernabé, B.D. Betsu, M. Beuran, S. Bhatt, S.
517	Biadgilign, K. Bienhoff, B. Bikbov, D. Bisanzio, R.R.A. Bourne, N.J.K.
518	Breitborde, L.N.B. Bulto, B.R. Bumgarner, Z.A. Butt, L. Cahuana-Hurtado, E.
519	Cameron, J.C. Campuzano, J. Car, R. Cárdenas, J.J. Carrero, A. Carter, D.C.
520	Casey, C.A. Castañeda-Orjuela, F. Catalá-López, F.J. Charlson, C.E. Chibueze,
521	O. Chimed-Ochir, V.H. Chisumpa, A.A. Chitheer, D.J. Christopher, L.G.
522	Ciobanu, M. Cirillo, A.J. Cohen, D. Colombara, C. Cooper, B.C. Cowie, M.H.

523	Criqui, L. Dandona, R. Dandona, P.I. Dargan, J. das Neves, D. V Davitoiu, K.
524	Davletov, B. de Courten, B.K. Defo, L. Degenhardt, S. Deiparine, K. Deribe, A.
525	Deribew, S. Dey, D. Dicker, E.L. Ding, S. Djalalinia, H.P. Do, D.T. Doku, D.
526	Douwes-Schultz, T.R. Driscoll, M. Dubey, B.B. Duncan, M. Echko, Z.Z. El-
527	Khatib, C.L. Ellingsen, A. Enayati, S.P. Ermakov, H.E. Erskine, S. Eskandarieh,
528	A. Esteghamati, K. Estep, C.S. e S. Farinha, A. Faro, F. Farzadfar, V.L. Feigin,
529	SM. Fereshtehnejad, J.C. Fernandes, A.J. Ferrari, T.R. Feyissa, I. Filip, S.
530	Finegold, F. Fischer, C. Fitzmaurice, A.D. Flaxman, N. Foigt, T. Frank, M.
531	Fraser, N. Fullman, T. Fürst, J.M. Furtado, E. Gakidou, A.L. Garcia-Basteiro, T.
532	Gebre, G.B. Gebregergs, T.T. Gebrehiwot, D.Y. Gebremichael, J.M. Geleijnse,
533	R. Genova-Maleras, H.A. Gesesew, P.W. Gething, R.F. Gillum, A.Z. Giref, M.
534	Giroud, G. Giussani, W.W. Godwin, A.L. Gold, E.M. Goldberg, P.N. Gona, S.V.
535	Gopalani, H.N. Gouda, A.C. Goulart, M. Griswold, R. Gupta, T. Gupta, V.
536	Gupta, P.C. Gupta, J.A. Haagsma, N. Hafezi-Nejad, A.D. Hailu, G.B. Hailu, R.R.
537	Hamadeh, M.T. Hambisa, S. Hamidi, M. Hammami, J. Hancock, A.J. Handal,
538	G.J. Hankey, Y. Hao, H.L. Harb, H.A. Hareri, M.S. Hassanvand, R. Havmoeller,
539	S.I. Hay, F. He, M.T. Hedayati, N.J. Henry, I.B. Heredia-Pi, C. Herteliu, H.W.
540	Hoek, M. Horino, N. Horita, H.D. Hosgood, S. Hostiuc, P.J. Hotez, D.G. Hoy, C.

541	Huynh, K.M. Iburg, C. Ikeda, B.V. Ileanu, A.A. Irenso, C.M.S. Irvine, S.M.S.
542	Islam, K.H. Jacobsen, N. Jahanmehr, M.B. Jakovljevic, M. Javanbakht, S.P.
543	Jayaraman, P. Jeemon, V. Jha, D. John, C.O. Johnson, S.C. Johnson, J.B. Jonas,
544	M. Jürisson, Z. Kabir, R. Kadel, A. Kahsay, R. Kamal, A. Karch, S.M. Karimi,
545	C. Karimkhani, A. Kasaeian, N.A. Kassaw, N.J. Kassebaum, S.V. Katikireddi, N.
546	Kawakami, P.N. Keiyoro, L. Kemmer, C.N. Kesavachandran, Y.S. Khader, E.A.
547	Khan, YH. Khang, A.T.A. Khoja, M.H. Khosravi, A. Khosravi, J.
548	Khubchandani, A.A. Kiadaliri, C. Kieling, D. Kievlan, Y.J. Kim, D. Kim, R.W.
549	Kimokoti, Y. Kinfu, N. Kissoon, M. Kivimaki, A.K. Knudsen, J.A. Kopec, S.
550	Kosen, P.A. Koul, A. Koyanagi, X.R. Kulikoff, G.A. Kumar, P. Kumar, M. Kutz,
551	H.H. Kyu, D.K. Lal, R. Lalloo, T.L.N. Lambert, Q. Lan, V.C. Lansingh, A.
552	Larsson, P.H. Lee, J. Leigh, J. Leung, M. Levi, Y. Li, D. Li Kappe, X. Liang,
553	M.L. Liben, S.S. Lim, P.Y. Liu, A. Liu, Y. Liu, R. Lodha, G. Logroscino, S.
554	Lorkowski, P.A. Lotufo, R. Lozano, T.C.D. Lucas, S. Ma, E.R.K. Macarayan,
555	E.R. Maddison, M. Magdy Abd El Razek, M. Majdan, R. Majdzadeh, A. Majeed,
556	R. Malekzadeh, R. Malhotra, D.C. Malta, H. Manguerra, T. Manyazewal, C.C.
557	Mapoma, L.B. Marczak, D. Markos, J. Martinez-Raga, F.R. Martins-Melo, I.
558	Martopullo, C. McAlinden, M. McGaughey, J.J. McGrath, S. Mehata, T. Meier,

559	K.G. Meles, P. Memiah, Z.A. Memish, M.M. Mengesha, D.T. Mengistu, B.G.
560	Menota, G.A. Mensah, T.J. Meretoja, A. Meretoja, A. Millear, T.R. Miller, S.
561	Minnig, M. Mirarefin, E.M. Mirrakhimov, A. Misganaw, S.R. Mishra, I.A.
562	Mohamed, K.A. Mohammad, A. Mohammadi, S. Mohammed, A.H. Mokdad,
563	G.L.D. Mola, S.K. Mollenkopf, M. Molokhia, L. Monasta, J.C. Montañez, M.
564	Montico, M.D. Mooney, M. Moradi-Lakeh, P. Moraga, L. Morawska, C.
565	Morozoff, S.D. Morrison, C. Mountjoy-Venning, K.B. Mruts, K. Muller, G.V.S.
566	Murthy, K.I. Musa, J.B. Nachega, A. Naheed, L. Naldi, V. Nangia, B.R.
567	Nascimento, J.T. Nasher, G. Natarajan, I. Negoi, J.W. Ngunjiri, C.T. Nguyen, Q.
568	Le Nguyen, T.H. Nguyen, G. Nguyen, M. Nguyen, E. Nichols, D.N.A. Ningrum,
569	V.M. Nong, J.J.N. Noubiap, F.A. Ogbo, IH. Oh, A. Okoro, A.T. Olagunju, H.E.
570	Olsen, B.O. Olusanya, J.O. Olusanya, K. Ong, J.N. Opio, E. Oren, A. Ortiz, M.
571	Osman, E. Ota, M. PA, R.E. Pacella, S. Pakhale, A. Pana, B.K. Panda, S. Panda-
572	Jonas, C. Papachristou, EK. Park, S.B. Patten, G.C. Patton, D. Paudel, K.
573	Paulson, D.M. Pereira, F. Perez-Ruiz, N. Perico, A. Pervaiz, M. Petzold, M.R.
574	Phillips, D.M. Pigott, C. Pinho, D. Plass, M.A. Pletcher, S. Polinder, M.J.
575	Postma, F. Pourmalek, C. Purcell, M. Qorbani, B.P.A. Quintanilla, A. Radfar, A.
576	Rafay, V. Rahimi-Movaghar, M.H.U. Rahman, M. Rahman, R.K. Rai, C.L.

577	Ranabhat, Z. Rankin, P.C. Rao, G.K. Rath, S. Rawaf, S.E. Ray, J. Rehm, R.C.
578	Reiner, M.B. Reitsma, G. Remuzzi, S. Rezaei, M.S. Rezai, M.B. Rokni, L.
579	Ronfani, G. Roshandel, G.A. Roth, D. Rothenbacher, G.M. Ruhago, R. SA, S.
580	Saadat, P.S. Sachdev, N. Sadat, M. Safdarian, S. Safi, S. Safiri, R. Sagar, R.
581	Sahathevan, J. Salama, P. Salamati, J.A. Salomon, A.M. Samy, J.R. Sanabria,
582	M.D. Sanchez-Niño, D. Santomauro, I.S. Santos, M.M. Santric Milicevic, B.
583	Sartorius, M. Satpathy, M.I. Schmidt, I.J.C. Schneider, S. Schulhofer-Wohl, A.E.
584	Schutte, D.C. Schwebel, F. Schwendicke, S.G. Sepanlou, E.E. Servan-Mori, K.A.
585	Shackelford, S. Shahraz, M.A. Shaikh, M. Shamsipour, M. Shamsizadeh, J.
586	Sharma, R. Sharma, J. She, S. Sheikhbahaei, M. Shey, P. Shi, C. Shields, M.
587	Shigematsu, R. Shiri, S. Shirude, I. Shiue, H. Shoman, M.G. Shrime, I.D.
588	Sigfusdottir, N. Silpakit, J.P. Silva, J.A. Singh, A. Singh, E. Skiadaresi, A. Sligar,
589	D.L. Smith, A. Smith, M. Smith, B.H.A. Sobaih, S. Soneji, R.J.D. Sorensen, J.B.
590	Soriano, C.T. Sreeramareddy, V. Srinivasan, J.D. Stanaway, V. Stathopoulou, N.
591	Steel, D.J. Stein, C. Steiner, S. Steinke, M.A. Stokes, M. Strong, B. Strub, M.
592	Subart, M.B. Sufiyan, B.F. Sunguya, P.J. Sur, S. Swaminathan, B.L. Sykes, R.
593	Tabarés-Seisdedos, S.K. Tadakamadla, K. Takahashi, J.S. Takala, R.T.
594	Talongwa, M.R. Tarawneh, M. Tavakkoli, N. Taveira, T.K. Tegegne, A. Tehrani-

595		Banihashemi, MH. Temsah, A.S. Terkawi, J.S. Thakur, O. Thamsuwan, K.R.
596		Thankappan, K.E. Thomas, A.H. Thompson, A.J. Thomson, A.G. Thrift, R.
597		Tobe-Gai, R. Topor-Madry, A. Torre, M. Tortajada, J.A. Towbin, B.X. Tran, C.
598		Troeger, T. Truelsen, D. Tsoi, E.M. Tuzcu, S. Tyrovolas, K.N. Ukwaja, E.A.
599		Undurraga, R. Updike, O.A. Uthman, B.S.C. Uzochukwu, J.F.M. van Boven, T.
600		Vasankari, N. Venketasubramanian, F.S. Violante, V.V. Vlassov, S.E. Vollset, T.
601		Vos, T. Wakayo, M.T. Wallin, YP. Wang, E. Weiderpass, R.G. Weintraub, D.J.
602		Weiss, A. Werdecker, R. Westerman, B. Whetter, H.A. Whiteford, T. Wijeratne,
603		C.S. Wiysonge, B.G. Woldeyes, C.D.A. Wolfe, R. Woodbrook, A. Workicho, D.
604		Xavier, Q. Xiao, G. Xu, M. Yaghoubi, B. Yakob, Y. Yano, M. Yaseri, H.H.
605		Yimam, N. Yonemoto, SJ. Yoon, M. Yotebieng, M.Z. Younis, Z. Zaidi, M.E.S.
606		Zaki, E.A. Zegeye, Z.M. Zenebe, T.A. Zerfu, A.L. Zhang, X. Zhang, B. Zipkin,
607		S. Zodpey, A.D. Lopez, C.J.L. Murray, Global, regional, and national age-sex
608		specific mortality for 264 causes of death, 1980–2016: a systematic analysis for
609		the Global Burden of Disease Study 2016, Lancet. 390 (2017) 1151–1210.
610		https://doi.org/10.1016/S0140-6736(17)32152-9.
611	[29]	C. Troeger, B. Blacker, I.A. Khalil, P.C. Rao, J. Cao, S.R.M. Zimsen, S.B.
612		Albertson, A. Deshpande, T. Farag, Z. Abebe, I.M.O. Adetifa, T.B. Adhikari, M.

613	Akibu, F.H. Al Lami, A. Al-Eyadhy, N. Alvis-Guzman, A.T. Amare, Y.A.
614	Amoako, C.A.T. Antonio, O. Aremu, E.T. Asfaw, S.W. Asgedom, T.M. Atey,
615	E.F. Attia, E.F.G.A. Avokpaho, H.T. Ayele, T.B. Ayuk, K. Balakrishnan, A.
616	Barac, Q. Bassat, M. Behzadifar, M. Behzadifar, S. Bhaumik, Z.A. Bhutta, A.
617	Bijani, M. Brauer, A. Brown, P.A.M. Camargos, C.A. Castañeda-Orjuela, D.
618	Colombara, S. Conti, A.F. Dadi, L. Dandona, R. Dandona, H.P. Do, E.
619	Dubljanin, D. Edessa, H. Elkout, A.Y. Endries, D.O. Fijabi, K.J. Foreman, M.H.
620	Forouzanfar, N. Fullman, A.L. Garcia-Basteiro, B.D. Gessner, P.W. Gething, R.
621	Gupta, T. Gupta, G.B. Hailu, H.Y. Hassen, M.T. Hedayati, M. Heidari, D.T.
622	Hibstu, N. Horita, O.S. Ilesanmi, M.B. Jakovljevic, A.A. Jamal, A. Kahsay, A.
623	Kasaeian, D.H. Kassa, Y.S. Khader, E.A. Khan, M.N. Khan, YH. Khang, Y.J.
624	Kim, N. Kissoon, L.D. Knibbs, S. Kochhar, P.A. Koul, G.A. Kumar, R. Lodha,
625	H. Magdy Abd El Razek, D.C. Malta, J.L. Mathew, D.T. Mengistu, H.B.
626	Mezgebe, K.A. Mohammad, M.A. Mohammed, F. Momeniha, S. Murthy, C.T.
627	Nguyen, K.R. Nielsen, D.N.A. Ningrum, Y.L. Nirayo, E. Oren, J.R. Ortiz, M.
628	PA, M.J. Postma, M. Qorbani, R. Quansah, R.K. Rai, S.M. Rana, C.L. Ranabhat,
629	S.E. Ray, M.S. Rezai, G.M. Ruhago, S. Safiri, J.A. Salomon, B. Sartorius, M.
630	Savic, M. Sawhney, J. She, A. Sheikh, M.S. Shiferaw, M. Shigematsu, J.A.

631		Singh, R. Somayaji, J.D. Stanaway, M.B. Sufiyan, G.R. Taffere, MH. Temsah,
632		M.J. Thompson, R. Tobe-Gai, R. Topor-Madry, B.X. Tran, T.T. Tran, K.B.
633		Tuem, K.N. Ukwaja, S.E. Vollset, J.L. Walson, F. Weldegebreal, A. Werdecker,
634		T.E. West, N. Yonemoto, M.E.S. Zaki, L. Zhou, S. Zodpey, T. Vos, M. Naghavi,
635		S.S. Lim, A.H. Mokdad, C.J.L. Murray, S.I. Hay, R.C. Reiner, Estimates of the
636		global, regional, and national morbidity, mortality, and aetiologies of lower
637		respiratory infections in 195 countries, 1990–2016: a systematic analysis for the
638		Global Burden of Disease Study 2016, Lancet Infect. Dis. 18 (2018) 1191–1210.
639		https://doi.org/10.1016/S1473-3099(18)30310-4.
640	[30]	J.A. Sparano, R.J. Gray, D.F. Makower, K.I. Pritchard, K.S. Albain, D.F. Hayes,
641		C.E. Geyer, E.C. Dees, E.A. Perez, J.A. Olson, J. Zujewski, T. Lively, S.S.
642		Badve, T.J. Saphner, L.I. Wagner, T.J. Whelan, M.J. Ellis, S. Paik, W.C. Wood,
643		P. Ravdin, M.M. Keane, H.L. Gomez Moreno, P.S. Reddy, T.F. Goggins, I.A.
644		Mayer, A.M. Brufsky, D.L. Toppmeyer, V.G. Kaklamani, J.N. Atkins, J.L.
645		Berenberg, G.W. Sledge, Prospective Validation of a 21-Gene Expression Assay
646		in Breast Cancer, N. Engl. J. Med. 373 (2015) 2005–2014.
647		https://doi.org/10.1056/NEJMoa1510764.

648 [31] E. Olsson, C. Winter, A. George, Y. Chen, J. Howlin, M.E. Tang, M. Dahlgren,

649		R. Schulz, D. Grabau, D. Westen, M. Fernö, C. Ingvar, C. Rose, P. Bendahl, L.
650		Rydén, Å. Borg, S.K. Gruvberger - Saal, H. Jernström, L.H. Saal, Serial
651		monitoring of circulating tumor <scp>DNA</scp> in patients with primary
652		breast cancer for detection of occult metastatic disease, EMBO Mol. Med. 7
653		(2015) 1034–1047. https://doi.org/10.15252/emmm.201404913.
654	[32]	M. Komori, K. Komiya, T. Shirakawa, T.J. Morikawa, T. Yoshimura,
655		Measurement of microRNA with isothermal DNA amplification on fully
656		automated immunoassay analyzers, Anal. Bioanal. Chem. 411 (2019) 3789-
657		3800. https://doi.org/10.1007/s00216-019-01878-z.
658		

659 Figure legends

- 660 Figure 1. Schematic representation of the reaction sequence in the novel assay method
- developed in this study for determination of inorganic pyrophosphate (PPi).
- 662 HPT: hypoxanthine phosphoribosyl transferase; XDH: xanthine dehydrogenase; 1-
- 663 methoxy PES: 1-methoxy-5-ethylphenazinium ethylsulfate.

664

- 665 Figure 2. Optimization of HPT and XDH activities in the assay.
- 666 The determination of enzymatic activities toward PPi was performed by measuring
- absorbance 5 min after starting the enzymatic reaction. The plot of absorbance at 340 nm,
- the wavelength of maximum absorbance of NADH, almost plateaued despite increasing
- 669 the enzymatic activities above 0.4 kU/L of HPT (A) and 3.84 kU/L of XDH (B). HPT:

670 hypoxanthine phosphoribosyl transferase; XDH: xanthine dehydrogenase.

- 672 Figure 3. Comparison between the novel assay method developed in this study for
- determination of PPi and a PPase-PNP-XOD-POD-based control method.
- There was a correlation between the values determined by the two methods; the regression
- line shows a slope of 0.938, intercept of -0.214, Spearman's rank correlation coefficient
- (r) of 0.999, and Sy x of 0.32. x-axis: PPase-PNP-XOD-POD method; y-axis: The novel

method developed in this study. PPase: inorganic pyrophosphatase; PNP: purinenucleoside phosphorylase; XOD: xanthine oxidase; POD: peroxidase.

679

- Figure 4. Detection of nucleic acid sequence-based amplification (NASBA) product on amplification of the gene β -actin using the novel assay method developed in this study for determination of PPi.
- 683 Visualization of NASBA product for β -actin with different amplification times by 2%
- agarose gel electrophoresis (above). Lane M: marker; Lane 1: negative control; Lane 2:
- 685 20-min amplification; Lane 3: 40-min amplification; Lane 4: 60-min amplification; Lane
- 5: 80-min amplification; Lane 6: 100-min amplification. Lanes 2–6 show that the quantity
- of NASBA products consisting of DNA and RNA hybrid increased with amplification
- time. The concentration of PPi in the NASBA product determined using the biochemical
- automated analyzer (below). PPi was not detected in the NASBA negative control,
- 690 whereas it was detected after a 20-min amplification. Sample 1: negative control; Sample
- 691 2: 20-min amplification; Sample 3: 40-min amplification; Sample 4: 60-min
- amplification; Sample 5: 80-min amplification; Sample 6: 100-min amplification.

Control method, µmol/L

9.38

9.80

 $-\beta$ -actin

