栄養素および食品成分の脳機能に対する効果の評価法—行動薬理学的手法の有用性—

武田 弘志*、辻 稔*

1. はじめに

栄養素は脳が機能するためのエネルギー源であり、脳の構成成分や生理活性物質の素材としても重要な役割を果たしている。例えば、脳が正常に機能するためには、ブドウ糖が酸素とともに絶え間なく供給される必要がある。脳の発達にはタンパク質が重要であり、発達期におけるタンパク質不足は、脳の発育不良につながる。また、チロシンやトリプトファンは脳内モノアミンの前駆体であり、ジアミノ酸をはじめとする数種のアミノ酸が生成される神経伝達物質として脳機能に寄与している。さらに、神経細胞の重要な構成成分は脳細胞、脂肪酸類であるため、この栄養素の着目をした研究は比較的多い。ビタミンやミネラルも脳内物質の合成・分解系、神経伝達物質の放出制御、細胞内情報伝達系など多様な場で脳機能の調節に関わっており、これらの栄養素の欠乏が脳機能障害のリスクファクターとなることも示唆されている。加えて、食品中に含まれる栄養素以外の成分も、脳機能に影響を与えることが報告されている。したがって、脳が司る中枢神経系機能のメカニズムや、これらの機能障害に起因する各種疾患の病態生理を考える上で、栄養学的あるいは食品学的側面からのアプローチは重要である。

行動はヒトを含めた動物が示す多種多様な動きの総称であり、脳内で生じる機能変化は多かれ少なかれ行動変化ということを示すことができる。すなわち、実験動物の行動は脳機能の1つであるという観点であり、これらを観察することにより、行動特性や認識の多様な高次脳機能を評価することができる。近年の分子生物学的ならびに遺伝子工学的な研究手法の発展は目覚ましく、各種栄養素あるいは食品成分の機能性の評価にも幅広く用いられている。しかし、細胞あるいは組織レベルで生理活性を示すことも必要であるため、このことと実際の高次脳機能における生理学的意義との間には大きな隔たりがある。したがって、ミクロな視点での機能解析が進めば進むほど、最終的にはマクロな視点での行動学的検証の必要性が高まってくる。行動薬理学は、実験心理学的手法を用いて脳の行動に対する化合物の効果を調べる学問であり、現在では、高次脳機能の変化を多角的に検出すための各種評価法が確立されている。また、これら評価法を用いて化合物の薬効を評価することが、有機化学の発展を助けることもある。本稿では、脳機能に対する栄養素あるいは食品成分の効果の評価に有用と考えられる、マウスやラットなどの小型動物（以下では動物と総称する）を用いた各種の行動薬理学的評価法の理論や特徴について概説する。

2. 一般行動の評価法

情動や認知のような特定の脳高次機能を行動薬理学的手法で評価するうえで、指標とする行動を用いることなく、生物学的変化を観察する。一般的に、実験動物の行動は脳機能の一つの反映であり、これらを観察することにより、情動や認知などの脳機能を評価することができる。近年の分子生物学的ならびに遺伝子工学的な研究手法の発展は目覚ましく、各種栄養素あるいは食品成分の機能性の評価にも幅広く用いられている。しかし、細胞あるいは組織レベルで生理活性を示すことも必要であるため、このことと実際の高次脳機能における生理学的意義との間には大きな隔たりがある。したがって、ミクロな視点での機能解析が進めば進むほど、最終的にはマクロな視点での行動学的検証の必要性が高まってくる。行動薬理学は、実験心理学的手法を用いて脳の行動に対する化合物の効果を調べる学問であり、現在では、高次脳機能の変化を多角的に検出すための各種評価法が確立されている。また、これら評価法を用いて化合物の薬効を評価することが、有機化学の発展を助けることもある。本稿では、脳機能に対する栄養素あるいは食品成分の効果の評価に有用と考えられる、マウスやラットなどの小型動物（以下では動物と総称する）を用いた各種の行動薬理学的評価法の理論や特徴について概説する。

*国際医療福祉大学 薬学部 薬理学分野

ILSI No.108 (2012.1) — 84
とえ行動抑制が認められてもそれが心動変化に起因するものであると断言できない。また、学習記憶機能の行動評価では、音刺激や痛み刺激を動物に認知させる方法を用いることがあるが、学習記憶機能の低下が認められた動物で聴覚や疼痛覚覚の異常が判明した場合、学習記憶障害の可能性は根拠から見直す必要がある。したがって、ほとんどの行動薬理学的研究で共通の混ぜ要因となる一般行動（動物が元来有する行動特性や感覚・運動機能に基づく行動など）を評価することは、得られた実験データを正確に解釈するために必要不可欠である。以下の項目では、代表的な一般行動の評価法の種類と概要について紹介する。

(1) オープンフィールド試験
動物が制約を受けることなく自由に行動できる空間をオープンフィールドと呼ぶ。本試験では、動物を1匹のみオープンフィールド内に置き、その直後より動物が示す種々の症状を観察的に観察する。通常は、動物に人工的な刺激を与えることなく、あらかじめ決めている観察項目的発現の有無、程度および頻度を一定隔間（3～5分間程度）ごとに評点（スコア）する。図1では、簡便な行動観察記録表の一例を示す。本表は、自律症状（流涙、流涎、眼瞼下垂、呼吸、排尿、排便、下痢）、反射機能（正反射、痛み反射、音反射）、運動性（自発運動、立ち上がり、よろめき歩行）、痙攣（強直性、間代性）、その他の生理機能（体温、体温、立毛）などの項目について、発現の有無や強度をスコア化（促進は1あるいは2、正常は0、抑制は－1あるいは－2）するものである。これらの項目について症状観察を行うことにより、動物の健康状態や、投与薬物の薬効を幅広く検証することが可能である。なお、オープンフィールド試験は、非常に安価かつシンプルな実験装置（衝撃器を除きタライ1つあれば十分である）で行える方法であるが、評価結果には主観的要因が多く含まれることから、実験者は評価のための手法・手法を十分に習熟し、常に一定の基準で判断することが重要である。

(2) ホールボード試験
ホールボード試験は、オープンフィールド試験の応用型ともいえる評価法である。試験装置としては床面に数箇所（通常4～16か所）を設けたオープンフィールドを用い、本装置内での動物が示す様々な探索行動を測定する。近年著者らは、これら探索行動を客観的かつ定量的に評価するための簡単システムとして、自動ホールボード試験装置を開発した。図2および3。本試験装置は、床面の中央から等距離に4か所穴を開けたオープンフィールド内での動物の探索行動を、独自で開発したサービデオ・トラッキング・システムとデータ解析用のソフトウェアにて自動解析するのである。新奇環境下である装置内で動物が示す探索行動を、情動性の指標として評価する。これまでに、

図1 オープンフィールド試験で使用する装置（A）と記録表の一例（B）
Figure 1 The apparatus and an example of the record table used in the open field test

85 — ILSI No.108 (2012.1)
著者らは、ホールボード試験におけるマウスの探索行動のうち特に穴のぞき行動が、抗不安効果を有するペンゾジアゼピン受容体作動薬の投与により増加することと、不安惹起作用を有するペンゾジアゼピン受容体逆性作動薬の投与および単回拘束ストレス刺激の負荷により減少することを示出している。したがって、ホールボード試験における穴のぞき行動は、動物の情動性の変化を検出する上で有用な指標となることが考えられる。

(3) 自発運動活性測定試験

自発運動は、外部刺激等で制御的に誘発される運動ではなく、文字通り実験動物が自発的に示す運動のことである。一般に自発運動活性は、移所運動や回転かごでの移動し運動を指標にして測定するが、本稿ではより汎用性が高い移所運動活性の測定方法について紹介する。

最も古典的な方法は、床を区切り分けた円形あるいは四角形のオープンフィールドを用いるものである（例えば、縦横50cmのオープンフィールドの床に線を引き、25区画（1区画あたり縦横10cm）に分ける）。このオープンフィールド内に動物を入れ、実験者は動物が床に記してある線を跨ぐ回数、あるいは各区画に入る回数を測定する。一般には、一定の短い時間内（5分間程度）における回数を経時的に連続測定し、その増減を移所運動活性の変化の指標とする。また、現在では、実験結果の定量性や客観性を高めるために、移所運動活性を自動的に測定できる装置を使用することが多い（図4）。通常は動物を測定環境下にしばらく放置して、新奇環境に順化させた後の移所運動活性を、自発運動活性の指標として測定する。また、同様に新奇環境という要因を排除するために、普段飼育されているホームケージ内での移所運動活性を測定することもある。特に、マウスの自発運動活性は、試験薬物の中枢興奮作用の有無を予測するための有用な指標である。さらに、自動測定装置を用いて飼育環境における移所運動活性を昼夜連続して経時的に測定することにより、サーカディアンリズムを評価することも可能です。

(4) ロータロッド試験および尾懸垂試験

薬物の投与や遺伝子変異により、動的運動機能に変化が生じることは珍しくない。著しい運動失調は肉眼による観察で把握できるが、見た目での判定が不可能な微妙な変化については、何らかの実験的指標を用いて定量的に評価する必要がある。その代表的な試験法としてロータロッド試験が挙げられる（図5）。本試験は、一定のスピードで回転する丸棒の上に動物を乗せ強制的に歩行させるものであり、通常は少しき訓練を行うこと
Figure 3 The rearing (A) and head-dip (B) behavior of mouse, the locus chart (C) and an example of the data (D) in the automatic hole-board test.
で動物は丸棒の回転に同調して落ち着くことなく歩行する。しかし、平衡感覚や協調運動の障害、あるいは骨格筋の弛緩が生じている場合は丸棒の上をうまく歩行できずに落下してしまうため、これを運動機能の低下として評価する。また、本法における丸棒上での歩行運動を訓練を重ねることにより上達することから、この現象を利用して運動学習の評価を行うこともある

図5 ロータロッド試験装置（A）と実験風景（B）
Figure 5 The apparatus and experiment scenery of the rotarod test

さらに、ロータロッド試験に加えて、マウスの運動機能を評価するより簡便な方法として懸垂試験が挙げられる。本試験では、床から20cm程度の高さでマウスを飼育ケージの網戸のふたに乗せ、その後ロッキングした時にマウスが網にしがみつく行動を運動機能の指標とする。ふたを裏返した後にマウスが網にしがみついている時間を測定し、その短縮を運動機能の低下と評価する。本試験は、特に骨格筋弛緩の有無の検討に適している評価法である。

3. 不安関連行動の評価法

心理学上、精神身体反應を引き起こす原因となる明確な対象が存在する場合を恐怖、存在しない場合を不安と定義されるが、いずれも不快刺激に対する生体の情動応答であることに違いはない。現在、動物を用いた不安関連行動の評価法として、動物が元来保有している生得的な情動反応を利用する方法（高架式十字迷路試験や明暗試験など）と、実験的ストレス刺激を負荷して条件付けを行うことにより人為的に誘発させた情動反応を利用する方法（恐怖条件付けストレス試験など）が開発されている。これらの評価法は、抗不安薬の薬効をスクリーニングするための前臨床試験法として考案されたものであるが、現在ではその域を超えて、各種遺伝子変換動物の情動機能の解析や、薬物のみならず栄養素や食品成分の不安あるいは抗不安効果の検出にも役立っている。以下の項では、代表的な不安関連行動の評価法の概要について紹介する。

1. 対策式十字迷路試験

高架式十字迷路試験は、動物が本質的に有する好奇心に基づいた接近行動と、不安や恐怖が動因となる回避行動を利用した、接近回避型のコンフリクトモデルである。実験装置としては、床から高位置に壁のない通路（オープンアーム）と壁のない通路（クローズドアーム）を十字型に交差させたものを用いる（図6）。本試験は、主にオープンおよびクローズドアームへの侵入回数および両アームでの滞在時間を測定することにより、動物の不安レベルを評価する。すなわち、壁がなく開放的な環境のオープンアームがより不安を感じる区域と考えられ、一般に静常な動物は、オープンアームへの侵入回数が少なく滞在時間も短い。一方、抗不安薬などの不安を軽減させる物質を投与された動物は、オープンアームへの侵入回数が多くなり滞在時間も長くなる。

図6 高架式十字迷路試験装置（A）と実験風景（BおよびC）
Figure 6 The apparatus and experiment scenery of the elevated plus maze test

2. 明暗試験

実験装置としては、明るい部屋（明区画）と暗い部屋（暗区画）の2区画で構成されるボックスを使用する（図7）。通常は実験装置内で自由に探索させた動物が両区画に滞在する時間をそれぞれ測定し、その割合を指標として不安レベルを評価する。動物は生得的に暗い場所を好
み明るい場所を嫌う習性を有するため、健康な動物は明区画よりも暗区画に長時間滞在する。一方、抗不安薬などの投与により不安レベルを低下させた動物では、明区画での滞在時間の延長が認められる。

図7 明暗試験装置
Figure 7 The apparatus of the light-dark test

(3) 恐怖条件付けストレス試験
ヒトは一度恐怖を体験するとその時の状況を学習・記憶し、後に類似した状況に置かれた時に再び恐怖に基づいた情動的ストレス反応（不安や抑うつ）を呈する。同様の現象は動物でも認められ、ある環境で恐怖刺激を与えた動物は、再度同じ環境に暴露された場合、恐怖刺激自体は存在しなくても以前の記憶に基づいた情動行動を示す。恐怖条件付けストレス試験は、このような恐怖記憶に基づいて発現する情動行動を利用した不安の評価法である。実験装置には床面に電撃刺激負荷用のグリッドを装備した電撃ボックスを使用、試験はコンディショニングとテストの2セッションで構成される（図8）。コンディショニングセッションでは動物を電撃ボックス内に入れ、一定の条件で回避不可能な電撃刺激を負荷して条件付けを行う。その後（通常は24-48時間後）のテストセッションでは再度同じ電撃ボックス内に動物を入れ、電撃刺激を与えない状態でマウスが示すすくみ行動（呼吸運動以外の体動を示さない無動状態のまま身体をくすぐる行動）の出現時間を測定する。すくみ行動は、現在臨床使用されている抗不安薬の投与で抑制されることから、不安状態を反映する情動行動の1つと考えられている。

図8 恐怖条件付けストレス試験の実験風景と実験スケジュールの1例
Figure 8 The experiment scenery and an example of the experimental schedule of the conditioned fear stress test

4. 抑うつ関連行動の評価法

抑うつ症状とは気分の落ち込みを意味する用語であり、日常生活で多くの人が経験するありふれた感情である。しかし、この感情が病的なものとなると、適応障害やうつ病などの情動障害の発症につながる。抑うつ症状の発症メカニズムはまだ不明な点が多いが、主要な誘因の1つとして多様なストレス環境が考えられる。したがって、動物に抑うつ症状を生じさせる手段として、種々のスト
レス刺激を負荷する試みがなされている。また、これら
押うつ症状を生じさせた動物は、新規抗うつ薬候補薬物
の前臨床評価や、各種栄養素ならびに食品成分の抗うつ
効果の検出に応用されている。以下の項では、ストレス
刺激の負荷や他の実験的処置により、押うつ症状に類似
した行動変化を動物に引き起こすことが期待できる研究
方法（強制水泳実験、尾垂試験、学習性無力試験）に
ついて概説する。

(1) 強制水泳試験
実験には、動物が逃避することができない水槽を用い
る。水槽内において動物に強制水泳を負荷すると、逃避
行動の後に無動行動（水面上に頭だけを出し、手足などを
動かすことなく浮いている状態）が認められる。その
24時間後（あるいはそれ以上経過した後）に再度水槽
内に動物を入れると、1回目の実験時よりも早期に無動
行動が発現するため、この無動行動の発現時間を押うつ
様行動として評価する。臨床上有効性が認められ
れている既存の抗うつ薬が、本試験で誘発される無動行
動を特異的かつ有意に抑制するため、各種試験薬物の抗
うつ効果の検出に有用と考えられている。また、本法は、
試験操作が極めて簡便なこともあり、現在、最も頻用さ
れている押うつ評価法の1つである。無動行動は動物が
水槽からの逃避を放棄した絶望状態を意味すると解釈
されているが、その発現メカニズムについては未だ不明な点が多い。また、無動行動の発現時間は水槽内の水温
に依存して変化することが知られていることから、試験
を通じて水温は一定に保つ必要がある。なお、中枢興奮
薬の投与などで自発運動活性が亢進した状態でも、見か
け上無動行動が抑制された結果となることから、前記し
tた自発運動活性測定試験により、試験薬物が動物の自発
運動活性には影響を与えないことを確認しておくことが
重要である。

(2) 尾垂懸垂試験
尾垂懸垂試験は、強制水泳試験に類似した理論に基づい
て、マウスの押うつ様行動を評価する方法として開発さ
れたものである。マウスの尾を試験装置内に設置した棒
に固定し逆さの状態で吊るすと、逃避行動の後に無動行
動（動作を示す様子が見えない状態）が認められる
ため、一定時間中に認められる無動行動の発現時間を押う
t様行動として評価する。図10。強制水泳試験と
同様に、本試験で認められる無動行動も、実験動物が暴
露された環境からの逃避を放棄した絶望状態を意味する
ものと考えられ、臨床上有効性が認められている既存の
押うつ薬により特異的かつ有意に抑制される。

図10 尾垂懸垂試験の実験風景と実験スケジュールの例

(3) 学習性無力試験
学習性無力試験は、回避ならびに逃避が不可能な電撃
ストレス刺激を負荷した動物において誘発される、能動的回避・逃避反応の障害を基盤として開発された評価法
である。本試験の方法は複数種存在するが、本稿では最
も一般的な、床面に電撃刺激負荷用のグリッドを設置し
た2 コンパートメントシャトルボックスを用いた方法
について概説する（図11）。まず、両コンパートメント
間を移動できない状態にしたシャトルボックス内に動物
を入れ、逃避不可能な電撃刺激を負荷する。その24 時
関後に、両コンパートメント間を自由に移動できる状態にした装置内に再度動物を入れ、条件刺激（光あるいは光刺激）に続く逃避可能な電気刺激を一定回数負荷する。この中に動物が示す回避（条件刺激のみで隔のコンパートメントに移動する）行動および逃避（電気刺激を受けた時点で隣のコンパートメントに移動する）行動の回数を測定し、これら両行動の障害を抑うつ様行動として評価する。本試験の特徴は、上記した強制水泳試験や尾懸垂試験とは異なり、発現する能動的回避・逃避反射の障害が、抗うつ薬を複数回投与することによりはじめて改善されることにある。このことは、抗うつ薬の治療効果発現には慢性的な服用が必要であるとの臨床的事実を一部反映しているものであり、ヒトにおけるうつ病に近い病態的特徴を有した抗うつモデルと考えられる。しかし、実験の手続きが複雑なため、試験の実施に際してはある程度の熟練が必要となる。

図11 学習性無力試験の実験風景と実験スケジュールの1例

Figure 11 The experiment scenery and an example of the experimental schedule of the learned helplessness test

5. 学習・記憶関連行動の評価

学習・記憶は、得られた情報を脳に蓄積し、さらに蓄積した情報に基づいて新たな推論や意志決定を行うための重要な脳機能である。また、認知症に代表される学習・記憶機能の障害は、患者本人はもちろんのこと、周囲の人々の日常生活にまで多大な影響をもたらす。現在、我が国は高齢社会を迎え、認知症をはじめとする学習・記憶障害を伴う様々な疾患が急増している。また、科学技術の発展により複雑化した現代社会は、小児の成長、発達障害や薬物乱用など、学習・記憶障害と密接に関連する様々な問題を浮き彫りにしている。したがって、学習・記憶障害の病態解明や有効な予防・治療法の開発は、現代の生命科学研究に課せられた重要な課題である。この課題を克服する目的として、基礎研究の領域では動物の学習・記憶機能の検査や学習・記憶障害に対して有益な効果を示す化合物の検索に役立つ評価系が数多く開発されている。以下の項では、代表的な学習・記憶関連行動の評価系（モーリス型水迷路試験、受動的回避学習試験、放射状迷路試験、新奇物体認識試験）について概説する。

（1）モーリス型水迷路試験

本試験は、実験室の空間情報を利用した、空間記憶の評価系である。実験装置として動物から見えないように水面下5～10mmに退避用プラットホームを設置した大型の円形プールを用い、プールを設置した実験室には、壁に黒色の画用紙を張ったり、一か所をライトアップするなど、空間認識の手掛かりとなる情報を用意する（図12）。試験は訓練試行とプローブ試行で構成されるが、訓練試行では、動物をプラットホームの設置場所を基準として4分割した任意の1区画より水面に放ち、プラットホームに到達するまでに要する遊泳時間や遊泳距離を測定する（規定の時間内にプラットホームに到達できなかったマウスは、実験者がプラットホームに誘導する）。この操作を1日あたり3～4回繰り返しトータルで7～10日間実施することにより、プラットホームに到達するまでに要する遊泳時間や遊泳距離が短縮することを学習・記憶関連行動の評価系として用いる。
（2）受動的回避学習試験

本試験は、動物が暗い場所を好む習性と、一度経験した嫌悪刺激に対して示す回避行動を利用する学習・記憶評価法である。実験装置としては、暗闇2区画で構成される2-コンパートメントボックスの暗区画の床面に、電撃刺激を計数のグリッドを装着したものも用いる。試験は、トレーニングとテストのセッションで構成される（図13）。トレーニングセッションでは動物を明区画に入れ、動物が暗区画に移動した時に同時に電撃刺激を負荷する。トレーニングセッション終了後、一定期間（通常は24時間）経過した後にテストセッションを実施する。テストセッションでは再度明区画にマウスを入れ、暗区画へ移動するまでの時間を反応潜時として測定する。この反応潜時の延長が嫌悪刺激に対する回避行動であり、学習・記憶の指標となる。本試験の特徴は、獲得・保持および想起の3つの学習・記憶プロセスそれぞれに対して、試験物質の効果を評価できることにある。すなわち、トレーニング・テスト実施の前および後に試験物質を投与した場合は、それぞれ獲得および保持に対する効果を評価することになる。一方、試験物質をテストセッションの実施前に投与した場合は、想起に対する効果を評価することになる。なお、本試験では動物の疼痛関値の変化が実験結果に大きな影響を及ぼすため、試験物質の投与により動物の電撃刺激に対する仮性疼痛反応が変化しないことを確認する必要がある。

（3）放射状迷路試験

本試験は、動物の探求行動を利用した迷路課題であり、空間作業記憶と参照記憶を同時に評価できるのが特徴である。実験装置は図14に示すような8方向放射状迷路を用いるのが一般的である。本試験では実験に先立ち動物に食餌制限を行ない、実験終了まで体重を自由摂食時の85％に維持する。試験方法は、まず装備と餌ベレットへの誘化を目的として、数日間にわたり1日あたり10〜15分間、全てのアームの先端に餌ベレットを置いた迷路を動物に自由に探索をさせる。その後、8本のアームのうち選定した1つを餌ベレットを置いた迷路内において、動物が全ての餌ベレットを探り終えるか、あるいは一定時間（通常は5%程度）経過するまでの行動を観察する。本試験は1日あたり1〜2試行、7〜10日間にわたり実施し、一度選択したアームに再選択した回数（作業記憶エラー数）や、餌ベレットを置めていないアームに選択した回数（参照記憶エラー数）を測定する。これら作業記憶エラー数および参照記憶エラー数が経日に減少することを、それぞれ空間作業記憶と参照記憶の指標とする。

図14 放射状迷路試験装置と実験スケジュールの1例
Figure 14 The apparatus and an example of the experimental schedule of the radial arm maze test

（4）新奇物体認識試験

本試験は、動物が新奇性を好むという特性を利用したものであり、順化、訓練試行および保持試行の3つの手
続きで構成される。まず、数日間にわたり1日1回10分間程度、オブジェクト（物体）を設置していない実験装置に動物を入れ、環境に順化させる。その後、同じ2つのオブジェクトを置いた装置内で一定時間（10分間程度）自由に探索させる（訓練試行）、さらに一定時間（1〜24時間程度）経過した後に、一部を新奇のオブジェクトに入れ替えた装置内で訓練試行と同様に自由に探索させる（保持試行）。訓練試行ならびに保持試行では、装置内に配置してある2つのオブジェクトに動物が接触する時間を測定する。健常な動物は、訓練試行では2つのオブジェクトに均等に接触するが、保持試行では入れ替えられた新奇のオブジェクトの方により長時間接触する。このような新奇のオブジェクトへの接触時間の延長を、学習・記憶の指標とする（図15）。

図15 新奇物体認識試験の実験風景と実験スケジュールの1例
Figure 15 The experiment scenery and an example of the experimental schedule of the novel object recognition test

6. おわりに

現代社会は多種多様なストレスに暴露される環境にあるため、うつ病や不安障害などのストレス性精神疾患の発症が急増している。また、超高齢社会を背景として、認知症の罹患率も年次を追って増加している。このような社会は、国民の活力や生産性的低下を招くため、適切な予防法や治療法の確立が急務である。現在、臨床使用されている既存の治療薬は、いずれも一定の有効性は担保されているものの、必ずしも満足のいくものではない。例えば、抗うつ薬は即効性に乏しく、全患者の3〜4割は薬物治療に抵抗性を示す難治性である。また、認知症の治療薬に関しては、中核症状の進行を遅延させる効果は有するものの、根本的な治療には至らない。最近、補完代替療法の一環として、情動障害や学習記憶障害に対する各種栄養素あるいは食品成分の有用性が注目されている。しかし、これらの臨床的見解を裏付ける基礎研究はさほど多くなく、科学的根拠に基づいてより安全かつ有効に治療や予防を行うためには、様々な観点から詳細な薬理学的検討を行う必要がある。本稿では、脳機能に対する栄養素あるいは食品成分の効能の評価に有用と考えられる、各種の行動薬理学的評価法を紹介した。今後、これら評価法を駆使した薬理学的探究が推進されることにより、脳機能に及ぼす各種栄養素および食品成分の効能の科学的根拠が確立されることを期待する。

＜参考文献＞

2) 辻 稔, 他. 日薬理誌 126, 88-93, 2005
3) 大関三夫, 他. 東医大誌 63, 41-49, 2005
6) Crawley J, Goodwin FK.: Pharmacol Biochem Behav 13, 167-170, 1890
14) Pu et al.; J Pharmacol Sci 94, 393-402, 2004

93—ILSI No.108 (2012.1)